logo

SCIENCE CHINA Information Sciences, Volume 64 , Issue 8 : 182309(2021) https://doi.org/10.1007/s11432-020-3103-3

Uplink transmission design for crowded correlated cell-free massive MIMO-OFDM systems

More info
  • ReceivedJul 7, 2020
  • AcceptedOct 30, 2020
  • PublishedJun 2, 2021

Abstract


References

[1] Larsson E G, Edfors O, Tufvesson F. Massive MIMO for next generation wireless systems. IEEE Commun Mag, 2014, 52: 186-195 CrossRef Google Scholar

[2] Lu L, Li G Y, Swindlehurst A L. An Overview of Massive MIMO: Benefits and Challenges. IEEE J Sel Top Signal Process, 2014, 8: 742-758 CrossRef ADS Google Scholar

[3] Ngo H Q, Ashikhmin A, Yang H. Cell-Free Massive MIMO Versus Small Cells. IEEE Trans Wireless Commun, 2017, 16: 1834-1850 CrossRef Google Scholar

[4] Zhang J, Bjornson E, Matthaiou M. Prospective Multiple Antenna Technologies for Beyond 5G. IEEE J Sel Areas Commun, 2020, 38: 1637-1660 CrossRef Google Scholar

[5] Zhang J, Chen S, Lin Y. Cell-Free Massive MIMO: A New Next-Generation Paradigm. IEEE Access, 2019, 7: 99878-99888 CrossRef Google Scholar

[6] Cimini L. Analysis and Simulation of a Digital Mobile Channel Using Orthogonal Frequency Division Multiplexing. IEEE Trans Commun, 1985, 33: 665-675 CrossRef Google Scholar

[7] Zhao J, Ni S, Yang L. Multiband Cooperation for 5G HetNets: A Promising Network Paradigm. IEEE Veh Technol Mag, 2019, 14: 85-93 CrossRef Google Scholar

[8] Bockelmann C, Pratas N, Nikopour H. Massive machine-type communications in 5g: physical and MAC-layer solutions. IEEE Commun Mag, 2016, 54: 59-65 CrossRef Google Scholar

[9] De Carvalho E, Bjornson E, Sorensen J H. Random Access Protocols for Massive MIMO. IEEE Commun Mag, 2017, 55: 216-222 CrossRef Google Scholar

[10] Wu Y, Gao X, Zhou S. Massive Access for Future Wireless Communication Systems. IEEE Wireless Commun, 2020, 27: 148-156 CrossRef Google Scholar

[11] de Carvalho E, Bjornson E, Sorensen J H. Random Pilot and Data Access in Massive MIMO for Machine-Type Communications. IEEE Trans Wireless Commun, 2017, 16: 7703-7717 CrossRef Google Scholar

[12] Chen Z, Bjornson E. Channel Hardening and Favorable Propagation in Cell-Free Massive MIMO With Stochastic Geometry. IEEE Trans Commun, 2018, 66: 5205-5219 CrossRef Google Scholar

[13] Nayebi E, Ashikhmin A, Marzetta T L. Precoding and Power Optimization in Cell-Free Massive MIMO Systems. IEEE Trans Wireless Commun, 2017, 16: 4445-4459 CrossRef Google Scholar

[14] Yang H, Marzetta T L. Energy efficiency of massive MIMO: cell-free vs. cellular. In: Proceedings of IEEE 87th Vehicular Technology Conference, 2018. 1--5. Google Scholar

[15] Bjornson E, Sanguinetti L. Making Cell-Free Massive MIMO Competitive With MMSE Processing and Centralized Implementation. IEEE Trans Wireless Commun, 2020, 19: 77-90 CrossRef Google Scholar

[16] Ngo H Q, Tran L N, Duong T Q. On the Total Energy Efficiency of Cell-Free Massive MIMO. IEEE Trans Green Commun Netw, 2018, 2: 25-39 CrossRef Google Scholar

[17] Interdonato G, Bj?rnson E, Quoc Ngo H. Ubiquitous cell-free Massive MIMO communications. J Wireless Com Network, 2019, 2019(1): 197 CrossRef Google Scholar

[18] Attarifar M, Abbasfar A, Lozano A. Random vs structured pilot assignment in cell-free massive MIMO wireless networks. In: Proceedings of IEEE International Conference on Communications Workships, Kansas City, US, 2018. 1--6. Google Scholar

[19] Liu H, Zhang J, Zhang X. Tabu-Search-Based Pilot Assignment for Cell-Free Massive MIMO Systems. IEEE Trans Veh Technol, 2020, 69: 2286-2290 CrossRef Google Scholar

[20] Liu H, Zhang J, Jin S. Graph Coloring Based Pilot Assignment for Cell-Free Massive MIMO Systems. IEEE Trans Veh Technol, 2020, 69: 9180-9184 CrossRef Google Scholar

[21] Ke Liu , Raghavan V, Sayeed A M. Capacity scaling and spectral efficiency in wide-band correlated mimo channels. IEEE Trans Inform Theor, 2003, 49: 2504-2526 CrossRef Google Scholar

[22] Fleury B H. First- and second-order characterization of direction dispersion and space selectivity in the radio channel. IEEE Trans Inform Theor, 2000, 46: 2027-2044 CrossRef Google Scholar

[23] You L, Gao X, Swindlehurst A L. Channel Acquisition for Massive MIMO-OFDM With Adjustable Phase Shift Pilots. IEEE Trans Signal Process, 2016, 64: 1461-1476 CrossRef ADS arXiv Google Scholar

[24] Adhikary A, Junyoung Nam A, Jae-Young Ahn A. Joint Spatial Division and Multiplexing-The Large-Scale Array Regime. IEEE Trans Inform Theor, 2013, 59: 6441-6463 CrossRef Google Scholar

[25] Pedersen K I, Mogensen P E, Fleury B H. A stochastic model of the temporal and azimuthal dispersion seen at the base station in outdoor propagation environments. IEEE Trans Veh Technol, 2000, 49: 437-447 CrossRef Google Scholar

[26] Tse D, Viswanath P. Fundamentals of Wireless Communication. Cambridge: Cambridge University Press, 2005. Google Scholar

[27] You L, Gao X, Xia X G. Pilot Reuse for Massive MIMO Transmission over Spatially Correlated Rayleigh Fading Channels. IEEE Trans Wireless Commun, 2015, 14: 3352-3366 CrossRef Google Scholar

[28] Wen C K, Jin S, Wong K K. Channel Estimation for Massive MIMO Using Gaussian-Mixture Bayesian Learning. IEEE Trans Wireless Commun, 2015, 14: 1356-1368 CrossRef Google Scholar

[29] Ye Li . Simplified channel estimation for OFDM systems with multiple transmit antennas. IEEE Trans Wireless Commun, 2002, 1: 67-75 CrossRef Google Scholar

[30] Bjornson E, Jalden N, Bengtsson M. Optimality Properties, Distributed Strategies, and Measurement-Based Evaluation of Coordinated Multicell OFDMA Transmission. IEEE Trans Signal Process, 2011, 59: 6086-6101 CrossRef ADS arXiv Google Scholar

[31] Hartigan J A, Wong M A. Algorithm AS 136: a k-means clustering algorithm. J R Stat Soc C-Appl, 1979, 28: 100--108. Google Scholar

[32] Marzetta T L, Larsson E G, Yang H, et al. Fundamentals of Massive MIMO. Cambridge: Cambridge University Press, 2016. Google Scholar

[33] Bj?rnson E, Hoydis J, Sanguinetti L. Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency. FNT Signal Processing, 2017, 11: 154-655 CrossRef Google Scholar

[34] Schaible S. Fractional Programming. II, On Dinkelbach's Algorithm. Manage Sci, 1976, 22: 868-873 CrossRef Google Scholar

[35] Karmarkar N. A new polynomial-time algorithm for linear programming. Combinatorica, 1984, 4: 373-395 CrossRef Google Scholar

[36] Tang A, Sun J, Gong K. Mobile propagation loss with a low base station antenna for NLOS street microcells in urban area. Proc IEEE Veh Technol Conf, 2001, 5: 333--336. DOI: 10.1109/VETECS.2001.944859. Google Scholar

[37] Bjornson E, Sanguinetti L, Hoydis J. Optimal Design of Energy-Efficient Multi-User MIMO Systems: Is Massive MIMO the Answer?. IEEE Trans Wireless Commun, 2015, 14: 3059-3075 CrossRef Google Scholar

  • Figure 1

    (Color online) Cell-free massive MIMO system. Active and inactive UEs are in red and gray, respectively.

  • Figure 2

    (Color online) Illustration of the transmission frame. In this example, the hopping pattern for a given UE is $\left\{a,a,b,\ldots,c\right\}$. Pilot signals among $N_c$ subcarriers are formulated based on this pattern, and transmitted during the pilot transmission phase. Data codewords are transmitted afterwards.

  • Table 1  

    Table 1System parameters for the simulation

    Parameter Value Unit
    Bandwidth B 20 MHz
    Carrier frequency $f_c$ 2 GHz
    Sampling duration $T_s$48.8 ns
    Subcarrier number $N_c$, guard interval $N_{\mathrm{cp}}$ 1024, 144
    The number of UEs $K$, the number of clusters $J$ $200,2$
    The number of OFDM symbols in a slot $Z_{a}$ $7$
    $h_{\mathrm{AP}}$, $h_{\mathrm{u}}$, $d_1$, $d_0$ 15, 1.65, 50, 10 m
    Maximum transmitting power $P_x$$0.5~$ W
    Pilot phase shift number per UE $\left|\mathcal{Y}~\right|$ 4
    $\gamma$ $10^{-8}~(Z=1),~10^{-13}(Z=2)$
    $\iota_k$ 0.4
    $P_{\mathrm{ip,}~k}$, $P_{\mathrm{ip,}~l}$, $P_{0,~l}$0.1, 0.1, 0.825W
    $P_{\mathrm{bt,}~l}$ 0.25 W/(Gbits/s)
  •   

    Algorithm 1 APSP set allocation algorithm

    ;

    Require:The angle-delay domain channel power spectrum $\{\mathbf{\Upsilon}_k:k\in\mathcal{K}\}$; the threshold $\lambda$ and $\gamma$; the phase shift set $\mathbf{\Psi}$; the large-scale fading $\boldsymbol{\beta}_k~\triangleq~~\left[\beta_{k,0}\!\;\;\beta_{k,1}\cdots~\beta_{k,L-1}~\right]$ for $\forall~k~\in~\mathcal{K}$.

    Output: The APSP set allocated to each UE $\left\{~\mathcal{Y}_k,~k\in~\mathcal{K}\right\}$.

    Centroids are randomly chosen as $\tilde{\boldsymbol{\beta}}_{j}\in~\mathbb{C}^{L\times~1}$ for $j=0,1,\ldots,J-1$;

    For $\forall~k~\in~\mathcal{K}$, UE $k$ is assigned to the cluster with $\max\nolimits_{j=0,1,\ldots,J-1}\xi(\boldsymbol{\beta}_k,~\tilde{\boldsymbol{\beta}}_{j})$;

    Centroids are updated by averaging over UEs belonging to respective clusters and UEs are reassigned until the assignments no longer change. Let $\mathcal{C}_j$ denote the set of UEs belonging to the $j$-th cluster;

    for $j=0,1,\ldots,J-1$

    $\left|\mathcal{Y}~\right|$ shifts are randomly chosen to form the set $\mathcal{Y}_{\mathcal{C}_j(0)}$ allocated for UE $\mathcal{C}_j(0)$. Initialize the allocated UE set $\mathcal{K}^{\rm{al}}_{j}=\{\mathcal{C}_j(0)\}$ and the unallocated UE set $\mathcal{K}^{\rm{un}}_{j}=\mathcal{C}_j\backslash\{\mathcal{C}_j(0)\}$.

    for $k\in~\mathcal{K}^{\mathrm{un}}_{j}$

    Search for $\left|\mathcal{Y}\right|$ pilot phase shifts $\phi\in\mathbf{\Psi}$ to form the APSP set $\mathcal{Y}_k$ allocated for the $k$-th UE, which should satisfy $~\sum\limits_{k^{\prime}\in\mathcal{K}^{\mathrm{al}}_{j}}~~{\frac{1}{|\mathcal{K}^{\mathrm{al}}_{j}~|}}~\mathop~{\max}\limits_{\phi_{k^{\prime}}\in~\mathcal{Y}_{k^{\prime}}}~\left\{\delta~\left(~\left\langle~{{\phi~}_{{{k}^{\prime}}}}\right\rangle_{Z}~-\left\langle~{{\phi~}}\right\rangle_{~Z}~\right)~\xi~\left(~\mathbf{\Upsilon}_k^0~\odot~\mathbf{\Upsilon}_k^0,~\mathbf{\Upsilon}_{k^{\prime}}^{\beta,\left\lfloor{{\phi~}_{{{k}^{\prime}}}}/Z\right\rfloor-\left\lfloor{{\phi~}}/Z\right\rfloor}~\right)~\right\}\leq~\gamma$;

    If $\left|\mathcal{Y}\right|$ pilot phase shifts are not found in step 7, then search for $\left|\mathcal{Y}\right|$ shifts from $\mathbf{\Psi}$ corresponding to the $\left|\mathcal{Y}\right|$ smallest $~\sum\limits_{k^{\prime}\in\mathcal{K}^{\mathrm{al}}_{j}}~~\mathop~{\max}\limits_{\phi_{k^{\prime}}\in~\mathcal{Y}_{k^{\prime}}}~\left\{\delta\left(~\left\langle~{{\phi~}_{{{k}^{\prime}}}}\right\rangle_{Z}~-~\left\langle~{{\phi~}}\right\rangle_{~Z}~\right)~\xi\left(~~\mathbf{\Upsilon}_k^0~\odot~~\mathbf{\Upsilon}_k^0,~\mathbf{\Upsilon}_{k^{\prime}}^{\beta,\left\lfloor{{\phi~}_{{{k}^{\prime}}}}/Z\right\rfloor-\left\lfloor{{\phi~}}/Z\right\rfloor}~\right)~\!\right\}$;

    Update $\mathcal{K}^{\rm{un}}_{j}:=\mathcal{K}^{\rm{un}}_{j}\backslash\{k\}, \mathcal{K}^{\rm{al}}_{j}:=\mathcal{K}^{\rm{al}}_{j}\cup\{k\}$

qqqq

Contact and support