SCIENCE CHINA Information Sciences, Volume 64 , Issue 4 : 140404(2021) https://doi.org/10.1007/s11432-020-3101-1

Bi$_2$O$_2$Se/BP van der Waals heterojunction for high performance broadband photodetector

More info
  • ReceivedSep 18, 2020
  • AcceptedOct 26, 2020
  • PublishedMar 2, 2021



This work was supported by National Key Research and Development Program of China (Grant Nos. 2017YFA0205700, 2019YFA0308000), National Natural Science Foundation of China (Grant Nos. 61774034, 91963130, 11704068, 61705106), Jiangsu Natural Science Foundation (Grant No. BK20170694), and the Fundamental Research Funds for the Central Universities.


Figures S1–S5.


[1] Koppens F H L, Mueller T, Avouris P. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotech, 2014, 9: 780-793 CrossRef ADS Google Scholar

[2] Buscema M, Island J O, Groenendijk D J. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem Soc Rev, 2015, 44: 3691-3718 CrossRef Google Scholar

[3] Suess R J, Leong E, Garrett J L. Mid-infrared time-resolved photoconduction in black phosphorus. 2D Mater, 2016, 3: 041006 CrossRef ADS arXiv Google Scholar

[4] Buscema M, Groenendijk D J, Blanter S I. Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors. Nano Lett, 2014, 14: 3347-3352 CrossRef ADS arXiv Google Scholar

[5] Liu B, K?pf M, Abbas A N. Black Arsenic-Phosphorus: Layered Anisotropic Infrared Semiconductors with Highly Tunable Compositions and Properties. Adv Mater, 2015, 27: 4423-4429 CrossRef Google Scholar

[6] Yuan S, Shen C, Deng B. Air-Stable Room-Temperature Mid-Infrared Photodetectors Based on hBN/Black Arsenic Phosphorus/hBN Heterostructures. Nano Lett, 2018, 18: 3172-3179 CrossRef ADS Google Scholar

[7] Fu Q, Zhu C, Zhao X. Adv Mater, 2019, 31: 1804945 CrossRef Google Scholar

[8] Li J, Wang Z, Wen Y. Adv Funct Mater, 2018, 28: 1706437 CrossRef Google Scholar

[9] Wang J, Fang H, Wang X. Recent Progress on Localized Field Enhanced Two-dimensional Material Photodetectors from Ultraviolet-Visible to Infrared. Small, 2017, 13: 1700894 CrossRef Google Scholar

[10] Wu F, Li Q, Wang P. High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region. Nat Commun, 2019, 10: 4663 CrossRef ADS Google Scholar

[11] Jin C, Ma E Y, Karni O. Ultrafast dynamics in van der Waals heterostructures. Nat Nanotech, 2018, 13: 994-1003 CrossRef ADS Google Scholar

[12] Lee C H, Lee G H, van der Zande A M. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat Nanotech, 2014, 9: 676-681 CrossRef ADS arXiv Google Scholar

[13] Fang H, Battaglia C, Carraro C. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc Natl Acad Sci USA, 2014, 111: 6198-6202 CrossRef ADS arXiv Google Scholar

[14] Massicotte M, Schmidt P, Vialla F. Picosecond photoresponse in van der Waals heterostructures. Nat Nanotech, 2016, 11: 42-46 CrossRef ADS arXiv Google Scholar

[15] Wang C, He Q, Halim U. Monolayer atomic crystal molecular superlattices. Nature, 2018, 555: 231-236 CrossRef ADS Google Scholar

[16] Yang F, Wang R, Zhao W. Thermal transport and energy dissipation in two-dimensional Bi$_{2}$O$_{2}$Se. Appl Phys Lett, 2019, 115: 193103 CrossRef ADS Google Scholar

[17] Doganov R A, O'Farrell E C T, Koenig S P. Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. Nat Commun, 2015, 6: 6647 CrossRef ADS arXiv Google Scholar

[18] Frisenda R, Molina-Mendoza A J, Mueller T. Atomically thin p-n junctions based on two-dimensional materials. Chem Soc Rev, 2018, 47: 3339-3358 CrossRef Google Scholar

[19] Liu H, Zhu X, Sun X. ACS Nano, 2019, 13: 13573-13580 CrossRef Google Scholar

[20] Luo P, Zhuge F, Wang F. ACS Nano, 2019, 13: 9028-9037 CrossRef Google Scholar

[21] Shim J, Oh S, Kang D H. Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic. Nat Commun, 2016, 7: 13413 CrossRef ADS Google Scholar

[22] Cai Y, Zhang G, Zhang Y W. Layer-dependent Band Alignment and Work Function of Few-Layer Phosphorene. Sci Rep, 2015, 4: 6677 CrossRef ADS arXiv Google Scholar

[23] Wu J, Yuan H, Meng M. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi$_{2}$O$_{2}$Se. Nat Nanotech, 2017, 12: 530-534 CrossRef ADS Google Scholar

[24] Srivastava P K, Hassan Y, Gebredingle Y. Van der Waals Broken-Gap p-n Heterojunction Tunnel Diode Based on Black Phosphorus and Rhenium Disulfide. ACS Appl Mater Interfaces, 2019, 11: 8266-8275 CrossRef Google Scholar

[25] Liu H, Li D, Ma C. Van der Waals epitaxial growth of vertically stacked Sb2Te3/MoS2 p-n heterojunctions for high performance optoelectronics. Nano Energy, 2019, 59: 66-74 CrossRef Google Scholar

[26] Yu Y, Sun Y, Hu Z. Fast Photoelectric Conversion in the Near?Infrared Enabled by Plasmon?Induced Hot?Electron Transfer. Adv Mater, 2019, 31: 1903829 CrossRef Google Scholar

[27] Zhao S, Wu J, Jin K. Highly Polarized and Fast Photoresponse of Black Phosphorus-InSe Vertical p-n Heterojunctions. Adv Funct Mater, 2018, 28: 1802011 CrossRef Google Scholar

[28] Xie Y, Wu E, Zhang J. ACS Appl Mater Interfaces, 2019, 11: 14215-14221 CrossRef Google Scholar

[29] Zhu W, Wei X, Yan F, et al. Broadband polarized photodetector based on p-BP/n-ReS$_2$ heterojunction. J Semicon, 2019, 40: 092001. Google Scholar

[30] Zheng S, Wu E, Feng Z. Nanoscale, 2018, 10: 10148-10153 CrossRef Google Scholar

[31] Jiang X, Zhang M, Liu L. Multifunctional black phosphorus/MoS$_{2}$ van der Waals heterojunction. Nanophotonics, 2020, 9: 2487-2493 CrossRef ADS Google Scholar

[32] Hong T, Chamlagain B, Wang T. Anisotropic photocurrent response at black phosphorus-MoS$_{2}$ p-n heterojunctions. Nanoscale, 2015, 7: 18537-18541 CrossRef ADS Google Scholar

[33] Ye L, Li H, Chen Z. ACS Photonics, 2016, 3: 692-699 CrossRef Google Scholar

[34] Xu Y, Liu C, Guo C. High performance near infrared photodetector based on in-plane black phosphorus p-n homojunction. Nano Energy, 2020, 70: 104518 CrossRef Google Scholar

[35] Yu X, Zhang S, Zeng H. Lateral black phosphorene P-N junctions formed via chemical doping for high performance near-infrared photodetector. Nano Energy, 2016, 25: 34-41 CrossRef Google Scholar

[36] Yang T, Li X, Wang L. Broadband photodetection of 2D Bi2O2Se-MoSe2 heterostructure. J Mater Sci, 2019, 54: 14742-14751 CrossRef ADS Google Scholar

[37] Tan C, Xu S, Tan Z. InfoMat, 2019, 1: 390-395 CrossRef Google Scholar

[38] Yuan H, Liu X, Afshinmanesh F. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nat Nanotech, 2015, 10: 707-713 CrossRef ADS Google Scholar

[39] Guo Z, Zhang H, Lu S. From Black Phosphorus to Phosphorene: Basic Solvent Exfoliation, Evolution of Raman Scattering, and Applications to Ultrafast Photonics. Adv Funct Mater, 2015, 25: 6996-7002 CrossRef Google Scholar

  • Figure 1

    (Color online) Structural characterizations of Bi$_{2}$O$_{2}$Se/BP vdW heterojunction. (a) Schematic of the Bi$_{2}$O$_{2}$Se/BP vdW heterojunction photodetector. (b) Raman spectra of BP, Bi$_{2}$O$_{2}$Se, and Bi$_{2}$O$_{2}$Se/BP heterojunction regions. (c) and (d) Optical and AFM images of the device. The scale bar is 6 $\mu~$m. (e) Height profile of BP and Bi$_{2}$O$_{2}$Se flakes corresponding to the white line marked in (d).

  • Figure 2

    (Color online) Electrical characterizations of the Bi$_{2}$O$_{2}$Se/BP vdW heterojunction. (a) The transfer characteristics of the Bi$_{2}$O$_{2}$Se FET and BP FET. (b) $I_{\rm~ds}$-$V_{\rm~ds}$ characteristic of the Bi$_{2}$O$_{2}$Se/BP vdW heterojunction. The inset shows the curve plotted on logarithmic scale. (c) Energy band diagram of the BP/Bi$_{2}$O$_{2}$Se vdW heterojunction at equilibrium before and after contact. (d) Energy band diagrams of the Bi$_{2}$O$_{2}$Se/BP vdW heterojunction device under different bias voltage $V_{\rm~ds}$.

  • Figure 3

    (Color online) Photoresponse of the Bi$_{2}$O$_{2}$Se/BP vdW heterojunction. (a) Power depended $I_{\rm~ds}$-$V_{\rm~ds}$ curves under 700 nm laser illumination. The inset is the schematic diagram of the Bi$_{2}$O$_{2}$Se/BP vdW heterojunction based photovoltaic device. protectłinebreak (b) The enlarged view of the $I_{\rm~ds}$-$V_{\rm~ds}$ curves in (a). (c) The photocurrent extracted from (b). (d) Scanning photocurrent mapping of the device under 532 nm laser illumination at $V_{\rm~ds}=~0$ V. The scale bar is 10 $\mu~$m. (e) Energy band diagram of the Bi$_{2}$O$_{2}$Se/BP vdW heterojunction under 700 nm laser illumination at reverse (i), zero (ii), forward (iii) bias.

  • Figure 4

    (Color online) High performance of the Bi$_{2}$O$_{2}$Se/BP vdW heterojunction photodetector. (a) and (b) Power depended $R$ and $D$* of Bi$_{2}$O$_{2}$Se, BP, and Bi$_{2}$O$_{2}$Se/BP heterojunction under 700 nm illumination at $V_{\rm~ds}=~-1$ V. (c) Photoswitching response under 700 nm laser illumination at $V_{\rm~ds}=~-1$ V. (d) The extracted response time from the falling edge in (c). (e) Power depended $R$ and $D$* of the Bi$_{2}$O$_{2}$Se/BP vdW heterojunction photodetector under three near-infrared waveband light (850 nm, 1310 nm and 1550 nm) at $V_{\rm~ds}=~-1$ V. (f) Comparison of the $R$ of Bi$_{2}$O$_{2}$Se/BP vdW heterojunction with other photovoltaic photodetectors based on BP and Bi$_{2}$O$_{2}$Se vdW heterojunction.