logo

SCIENCE CHINA Information Sciences, Volume 64 , Issue 10 : 202201(2021) https://doi.org/10.1007/s11432-020-3092-y

Interactive multiobjective evolutionary algorithm based on decomposition and compression

More info
  • ReceivedMar 24, 2020
  • AcceptedOct 2, 2020
  • PublishedSep 15, 2021

Abstract


Acknowledgment

This work was supported in part by National Outstanding Youth Talents Support Program (Grant No. 61822304), National Natural Science Foundation of China (Grant No. 61673058), NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization (Grant No. U1609214), Consulting Research Project of the Chinese Academy of Engineering (Grant No. 2019-XZ-7), Projects of Major International (Regional) Joint Research Program of NSFC (Grant No. 61720106011), Peng Cheng Laboratory, and Beijing Advanced Innovation Center for Intelligent Robots and Systems.


Supplement

Appendix A.


References

[1] Wang Y, Jiao X. Multi-objective energy management for PHEV using Pontryagin's minimum principle and particle swarm optimization online. Sci China Inf Sci, 2021, 64: 119204 CrossRef Google Scholar

[2] Gao G Q, Xin B. A-STC: auction-based spanning tree coverage algorithm formotion planning of cooperative robots. Front Inf Technol Electron Eng, 2019, 20: 18-31 CrossRef Google Scholar

[3] Radmanesh M, Kumar M, Guentert P H. Overview of Path-Planning and Obstacle Avoidance Algorithms for UAVs: A Comparative Study. Un Sys, 2018, 06: 95-118 CrossRef Google Scholar

[4] Hafez A T, Kamel M A. Cooperative Task Assignment and Trajectory Planning of Unmanned Systems Via HFLC and PSO. Un Sys, 2019, 07: 65-81 CrossRef Google Scholar

[5] Xue Y, Zhang J, Gao X. Resource allocation for pilot-assisted massive MIMO transmission. Sci China Inf Sci, 2017, 60: 042302 CrossRef Google Scholar

[6] Zhou H, Yu W, Yi P. Quantized Gradient-Descent Algorithm for Distributed Resource Allocation. Un Sys, 2019, 07: 119-136 CrossRef Google Scholar

[7] Wang K, Xiong Z, Chen L. Joint time delay and energy optimization with intelligent overclocking in edge computing. Sci China Inf Sci, 2020, 63: 140313 CrossRef Google Scholar

[8] Li B, Li J, Tang K. Many-Objective Evolutionary Algorithms. ACM Comput Surv, 2015, 48: 1-35 CrossRef Google Scholar

[9] von Lücken C, Barán B, Brizuela C. A survey on multi-objective evolutionary algorithms for many-objective problems. Comput Optim Appl, 2014, 25 CrossRef Google Scholar

[10] Xin B, Chen L, Chen J. Interactive Multiobjective Optimization: A Review of the State-of-the-Art. IEEE Access, 2018, 6: 41256-41279 CrossRef Google Scholar

[11] Deb K, Sinha A, Korhonen P J. An Interactive Evolutionary Multiobjective Optimization Method Based on Progressively Approximated Value Functions. IEEE Trans Evol Computat, 2010, 14: 723-739 CrossRef Google Scholar

[12] Gong M, Liu F, Zhang W, et al. Interactive protectMOEA/D for multi-objective decision making. In: Proceedings of Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, 2011. 721--728. Google Scholar

[13] Chen J, Li J, and Xin B. protectDMOEA-$\varepsilon$C: Decomposition-based multiobjective evolutionary algorithm with the $\varepsilon$-constraint framework. IEEE Transactions on Evolutionary Computation, 2017, 21(5):714--730 DOI: 10.1109/TEVC.2017.2671462. Google Scholar

[14] Zhou H, Qiao J. Multiobjective optimal control for wastewater treatment process using adaptive MOEA/D. Appl Intell, 2019, 49: 1098-1126 CrossRef Google Scholar

[15] Qiao J, Zhou H, Yang C. A decomposition-based multiobjective evolutionary algorithm with angle-based adaptive penalty. Appl Soft Computing, 2019, 74: 190-205 CrossRef Google Scholar

[16] Koksalan M, Karahan . An Interactive Territory Defining Evolutionary Algorithm: iTDEA. IEEE Trans Evol Computat, 2010, 14: 702-722 CrossRef Google Scholar

[17] Sinha A, Korhonen P, Wallenius J, et al. An interactive evolutionary multi-objective optimization method based on polyhedral cones. In: Proceedings of Learning and Intelligent Optimization. Berlin: Springer, 2010. 318--332. Google Scholar

[18] On a Bicriterion Formulation of the Problems of Integrated System Identification and System Optimization. IEEE Trans Syst Man Cybern, 1971, SMC-1: 296-297 CrossRef Google Scholar

[19] Miettinen K. Nonlinear Multiobjective Optimization. Boston: Kluwer Academic Publishers, 1999. Google Scholar

[20] Zhang Q, Liu W, Li H. The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. In: Proceedings of the IEEE Congress on Evolutionary Computation, 2009. 203--208. Google Scholar

[21] Deb K. An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Eng, 2000, 186: 311-338 CrossRef Google Scholar

[22] Jain A K, Murty M N, Flynn P J. Data clustering. ACM Comput Surv, 1999, 31: 264-323 CrossRef Google Scholar

[23] Chankong V, Haimes Y Y. Multiobjective Decision Making: Theory and Methodology. Amsterdam: Elsevier Science Publishing, 1983. Google Scholar

[24] Galperin E A, Wiecek M. Retrieval and use of the balance set in multiobjective global optimization. Comput Math Appl, 1999, 37: 111--123. Google Scholar

[25] Miettinen K, M?kel? M M, Kaario K. Experiments with classification-based scalarizing functions in interactive multiobjective optimization. Eur J Operational Res, 2006, 175: 931-947 CrossRef Google Scholar

[26] Narula S C, Weistroffer H R. A flexible method for nonlinear multicriteria decision-making problems. IEEE Trans Syst Man Cybern, 1989, 19: 883-887 CrossRef Google Scholar

[27] Miettinen K and Mäkelä M M. Interactive method protectNIMBUS for nondifferentiable multiobjective optimization problems. In: Proceedings of Clímaco J, editor, Multicriteria Analysis. Springer Berlin Heidelberg, 1997. 310--319. Google Scholar

[28] Miettinen K, Lotov A V, Kamenev G K. Integration of Two Multiobjective Optimization Methods for Nonlinear Problems. Optimization Methods Software, 2003, 18: 63-80 CrossRef Google Scholar

[29] Zitzler E, Deb K, Thiele L. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolary Computation, 2000, 8: 173-195 CrossRef Google Scholar

[30] Miettinen K, M?kel? M M. Optimization, 1995, 34: 231-246 CrossRef Google Scholar

[31] Deb K, Thiele L, Laumanns M, et al. Scalable test problems for evolutionary multiobjective optimization. In: Evolutionary Multiobjective Optimization. Berlin: Springer, 2005. 105--145. Google Scholar

[32] Zhang Q, Zhou A, Zhao S, et al. Multiobjective optimization test instances for the protectCEC 2009 Special Session and Competition. Technical Report CES-487, The School of Computer Science and Electronic Engieering University of Essex, Colchester, U.K., 2009. Google Scholar

[33] Huband S, Barone L, While L, et al. A scalable multi-objective test problem toolkit. In: Proceedings of the 3rd International Conference on Evolutionary Multi-Criterion Optimization, 2005. 280--295. Google Scholar

[34] Xin B, Li H, Wang L. protectICB-MOEA/D: an interactive classification-based multi-objective optimization algorithm. In: Proceedings of the 37th Chinese Control Conference, 2018. 2500--2505. Google Scholar

[35] Chugh T, Sindhya K, Hakanen J, et al. An interactive simple indicator-based evolutionary algorithm (protectI-SIBEA for multiobjective optimization problems. In: Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization. Berlin: Springer, 2015. 277--291. Google Scholar

[36] Li K, Deb K, Zhang Q. An Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition. IEEE Trans Evol Computat, 2015, 19: 694-716 CrossRef Google Scholar

[37] Li J, Xin B. An improved version of protectDMOEA-$\varepsilon$C for many-objective optimization problems: protectIDMOEA-$\varepsilon$C In: Proceedings of the 38th Chinese Control Conference, 2019. 2212--2217. Google Scholar

qqqq

Contact and support