SCIENCE CHINA Information Sciences, Volume 64 , Issue 10 : 202201(2021) https://doi.org/10.1007/s11432-020-3092-y

Interactive multiobjective evolutionary algorithm based on decomposition and compression

More info
  • ReceivedMar 24, 2020
  • AcceptedOct 2, 2020
  • PublishedSep 15, 2021



This work was supported in part by National Outstanding Youth Talents Support Program (Grant No. 61822304), National Natural Science Foundation of China (Grant No. 61673058), NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization (Grant No. U1609214), Consulting Research Project of the Chinese Academy of Engineering (Grant No. 2019-XZ-7), Projects of Major International (Regional) Joint Research Program of NSFC (Grant No. 61720106011), Peng Cheng Laboratory, and Beijing Advanced Innovation Center for Intelligent Robots and Systems.


Appendix A.


[1] Wang Y, Jiao X. Multi-objective energy management for PHEV using Pontryagin's minimum principle and particle swarm optimization online. Sci China Inf Sci, 2021, 64: 119204 CrossRef Google Scholar

[2] Gao G Q, Xin B. A-STC: auction-based spanning tree coverage algorithm formotion planning of cooperative robots. Front Inf Technol Electron Eng, 2019, 20: 18-31 CrossRef Google Scholar

[3] Radmanesh M, Kumar M, Guentert P H. Overview of Path-Planning and Obstacle Avoidance Algorithms for UAVs: A Comparative Study. Un Sys, 2018, 06: 95-118 CrossRef Google Scholar

[4] Hafez A T, Kamel M A. Cooperative Task Assignment and Trajectory Planning of Unmanned Systems Via HFLC and PSO. Un Sys, 2019, 07: 65-81 CrossRef Google Scholar

[5] Xue Y, Zhang J, Gao X. Resource allocation for pilot-assisted massive MIMO transmission. Sci China Inf Sci, 2017, 60: 042302 CrossRef Google Scholar

[6] Zhou H, Yu W, Yi P. Quantized Gradient-Descent Algorithm for Distributed Resource Allocation. Un Sys, 2019, 07: 119-136 CrossRef Google Scholar

[7] Wang K, Xiong Z, Chen L. Joint time delay and energy optimization with intelligent overclocking in edge computing. Sci China Inf Sci, 2020, 63: 140313 CrossRef Google Scholar

[8] Li B, Li J, Tang K. Many-Objective Evolutionary Algorithms. ACM Comput Surv, 2015, 48: 1-35 CrossRef Google Scholar

[9] von Lücken C, Barán B, Brizuela C. A survey on multi-objective evolutionary algorithms for many-objective problems. Comput Optim Appl, 2014, 25 CrossRef Google Scholar

[10] Xin B, Chen L, Chen J. Interactive Multiobjective Optimization: A Review of the State-of-the-Art. IEEE Access, 2018, 6: 41256-41279 CrossRef Google Scholar

[11] Deb K, Sinha A, Korhonen P J. An Interactive Evolutionary Multiobjective Optimization Method Based on Progressively Approximated Value Functions. IEEE Trans Evol Computat, 2010, 14: 723-739 CrossRef Google Scholar

[12] Gong M, Liu F, Zhang W, et al. Interactive protectMOEA/D for multi-objective decision making. In: Proceedings of Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, 2011. 721--728. Google Scholar

[13] Chen J, Li J, and Xin B. protectDMOEA-$\varepsilon$C: Decomposition-based multiobjective evolutionary algorithm with the $\varepsilon$-constraint framework. IEEE Transactions on Evolutionary Computation, 2017, 21(5):714--730 DOI: 10.1109/TEVC.2017.2671462. Google Scholar

[14] Zhou H, Qiao J. Multiobjective optimal control for wastewater treatment process using adaptive MOEA/D. Appl Intell, 2019, 49: 1098-1126 CrossRef Google Scholar

[15] Qiao J, Zhou H, Yang C. A decomposition-based multiobjective evolutionary algorithm with angle-based adaptive penalty. Appl Soft Computing, 2019, 74: 190-205 CrossRef Google Scholar

[16] Koksalan M, Karahan . An Interactive Territory Defining Evolutionary Algorithm: iTDEA. IEEE Trans Evol Computat, 2010, 14: 702-722 CrossRef Google Scholar

[17] Sinha A, Korhonen P, Wallenius J, et al. An interactive evolutionary multi-objective optimization method based on polyhedral cones. In: Proceedings of Learning and Intelligent Optimization. Berlin: Springer, 2010. 318--332. Google Scholar

[18] On a Bicriterion Formulation of the Problems of Integrated System Identification and System Optimization. IEEE Trans Syst Man Cybern, 1971, SMC-1: 296-297 CrossRef Google Scholar

[19] Miettinen K. Nonlinear Multiobjective Optimization. Boston: Kluwer Academic Publishers, 1999. Google Scholar

[20] Zhang Q, Liu W, Li H. The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. In: Proceedings of the IEEE Congress on Evolutionary Computation, 2009. 203--208. Google Scholar

[21] Deb K. An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Eng, 2000, 186: 311-338 CrossRef Google Scholar

[22] Jain A K, Murty M N, Flynn P J. Data clustering. ACM Comput Surv, 1999, 31: 264-323 CrossRef Google Scholar

[23] Chankong V, Haimes Y Y. Multiobjective Decision Making: Theory and Methodology. Amsterdam: Elsevier Science Publishing, 1983. Google Scholar

[24] Galperin E A, Wiecek M. Retrieval and use of the balance set in multiobjective global optimization. Comput Math Appl, 1999, 37: 111--123. Google Scholar

[25] Miettinen K, M?kel? M M, Kaario K. Experiments with classification-based scalarizing functions in interactive multiobjective optimization. Eur J Operational Res, 2006, 175: 931-947 CrossRef Google Scholar

[26] Narula S C, Weistroffer H R. A flexible method for nonlinear multicriteria decision-making problems. IEEE Trans Syst Man Cybern, 1989, 19: 883-887 CrossRef Google Scholar

[27] Miettinen K and Mäkelä M M. Interactive method protectNIMBUS for nondifferentiable multiobjective optimization problems. In: Proceedings of Clímaco J, editor, Multicriteria Analysis. Springer Berlin Heidelberg, 1997. 310--319. Google Scholar

[28] Miettinen K, Lotov A V, Kamenev G K. Integration of Two Multiobjective Optimization Methods for Nonlinear Problems. Optimization Methods Software, 2003, 18: 63-80 CrossRef Google Scholar

[29] Zitzler E, Deb K, Thiele L. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolary Computation, 2000, 8: 173-195 CrossRef Google Scholar

[30] Miettinen K, M?kel? M M. Optimization, 1995, 34: 231-246 CrossRef Google Scholar

[31] Deb K, Thiele L, Laumanns M, et al. Scalable test problems for evolutionary multiobjective optimization. In: Evolutionary Multiobjective Optimization. Berlin: Springer, 2005. 105--145. Google Scholar

[32] Zhang Q, Zhou A, Zhao S, et al. Multiobjective optimization test instances for the protectCEC 2009 Special Session and Competition. Technical Report CES-487, The School of Computer Science and Electronic Engieering University of Essex, Colchester, U.K., 2009. Google Scholar

[33] Huband S, Barone L, While L, et al. A scalable multi-objective test problem toolkit. In: Proceedings of the 3rd International Conference on Evolutionary Multi-Criterion Optimization, 2005. 280--295. Google Scholar

[34] Xin B, Li H, Wang L. protectICB-MOEA/D: an interactive classification-based multi-objective optimization algorithm. In: Proceedings of the 37th Chinese Control Conference, 2018. 2500--2505. Google Scholar

[35] Chugh T, Sindhya K, Hakanen J, et al. An interactive simple indicator-based evolutionary algorithm (protectI-SIBEA for multiobjective optimization problems. In: Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization. Berlin: Springer, 2015. 277--291. Google Scholar

[36] Li K, Deb K, Zhang Q. An Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition. IEEE Trans Evol Computat, 2015, 19: 694-716 CrossRef Google Scholar

[37] Li J, Xin B. An improved version of protectDMOEA-$\varepsilon$C for many-objective optimization problems: protectIDMOEA-$\varepsilon$C In: Proceedings of the 38th Chinese Control Conference, 2019. 2212--2217. Google Scholar


Contact and support