logo

SCIENCE CHINA Information Sciences, Volume 64 , Issue 7 : 172210(2021) https://doi.org/10.1007/s11432-020-3078-1

Parametric output regulation using observer-based PI controllers with applications in flexible spacecraft attitude control

More info
  • ReceivedMay 15, 2020
  • AcceptedOct 1, 2020
  • PublishedMay 18, 2021

Abstract


Acknowledgment

This work was supported by Major Program of National Natural Science Foundation of China (Grant Nos. 61690210, 61690212), Self-Planned Task of State Key Laboratory of Robotics and System (HIT) (Grant No. SKLRS201716A), and National Natural Science Foundation of China (Grant No. 61333003). The authors are very grateful to the anonymous associate editor and reviewers for their meaningful suggestions and comments.


References

[1] Doebelin E O. Control System Principles and Design. New York: John Wiley & Sons, Inc., 1985. Google Scholar

[2] Johnson C. Optimal control of the linear regulator with constant disturbances. IEEE Trans Autom Control, 1968, 13: 416-421 CrossRef Google Scholar

[3] Mahalanabis A K, Pal J K. Optimal regulator design of linear multivariable systems with prescribed pole locations in the presence of system disturbances. IEE Proc D Control Theor Appl UK, 1985, 132: 231-236 CrossRef Google Scholar

[4] Saif M. Optimal robust servo design with industrial and process control applications. In: Proceedings of the 1992 American Control Conference, Chicago, USA, 1992. 107--111. Google Scholar

[5] Saif M. Robust servo design with applications. IEE Proc D Control Theor Appl UK, 1993, 140: 87-92 CrossRef Google Scholar

[6] Fan J C, Kobayashi T. A simple adaptive PI controller for linear systems with constant disturbances. IEEE Trans Autom Control, 1998, 43: 733-736 CrossRef Google Scholar

[7] Townley S, Logemann H. Adaptive integral control of time-delay systems. IEE Proc - Control Theor Appl, 1997, 144: 531-536 CrossRef Google Scholar

[8] Angeli D, Casavola A, Mosca E. Predictive PI-control of linear plants under positional and incremental input saturations. Automatica, 2000, 36: 1505-1516 CrossRef Google Scholar

[9] Pohjolainen S. Robust multivariable PI-controller for infinite dimensional systems. IEEE Trans Autom Control, 1982, 27: 17-30 CrossRef Google Scholar

[10] Logemann H, Zwart H. On Robust PI-Control of Infinite-Dimensional Systems. SIAM J Control Optim, 1992, 30: 573-593 CrossRef Google Scholar

[11] Xu C Z, Jerbi H. A robust PI-controller for infinite-dimensional systems. Int J Control, 1995, 61: 33-45 CrossRef Google Scholar

[12] Desoer C, Ching-An Lin C. Tracking and disturbance rejection of MIMO nonlinear systems with PI controller. IEEE Trans Autom Control, 1985, 30: 861-867 CrossRef Google Scholar

[13] Huang J, Rugh W J. On a nonlinear multivariable servomechanism problem. Automatica, 1990, 26: 963-972 CrossRef Google Scholar

[14] A. Google Scholar

[15] A??kme?e A B, Corless M. Robust output tracking for uncertain/nonlinear systems subject to almost constant disturbances. Automatica, 2002, 38: 1919-1926 CrossRef Google Scholar

[16] A?ikme?e A B, Corless M. Robust tracking and disturbance rejection of bounded rate signals for uncertain/non-linear systems. Int J Control, 2003, 76: 1129-1141 CrossRef Google Scholar

[17] Konstantopoulos G C, Baldivieso-Monasterios P R. Nonlinear PI controller for systems with state constraint requirements. In: Proceedings of the 18th European Control Conference, Naples, Italy, 2019. 1642--1647. Google Scholar

[18] Milasi R M, Moallem M. Adaptive PI control of a three phase AC/DC PWM converter. In: Proceedings of the IECON 40th Annual Conference of the IEEE Industrial Electronics Society, Dallas, USA, 2014. 65--70. Google Scholar

[19] Hackl C M. Current PI-funnel control with anti-windup for synchronous machines. In: Proceedings of the 54th IEEE Conference on Decision and Control, Osaka, Japan, 2015. 1997--2004. Google Scholar

[20] Mokhtar M, Marei M I, El-Sattar A A. An Adaptive Droop Control Scheme for DC Microgrids Integrating Sliding Mode Voltage and Current Controlled Boost Converters. IEEE Trans Smart Grid, 2019, 10: 1685-1693 CrossRef Google Scholar

[21] Zhang H, Wang J. Vehicle Lateral Dynamics Control Through AFS/DYC and Robust Gain-Scheduling Approach. IEEE Trans Veh Technol, 2016, 65: 489-494 CrossRef Google Scholar

[22] Duan G R, Wang J Y, Zhao T Y, et al. Parametric comprehensive optimization design of high accuracy tracking control system for satellite optical communication. Control Theory and Applications, 2020, 37: 469-480 (in Chinese). Google Scholar

[23] Duan G R, Zhao T Y. Observer-based multi-objective parametric design for spacecraft with super flexible netted antennas. Sci China Inf Sci, 2020, 63: 172002 CrossRef Google Scholar

[24] Duan G R. Theory of Linear Systems: Volume II (in Chinese). Beijing: Science Press, 2016. Google Scholar

[25] Duan G R. Robust eigenstructure assignment via dynamical compensators. Automatica, 1993, 29: 469-474 CrossRef Google Scholar

[26] Guang-Ren Duan . Solutions of the equation AV+BW=VF and their application to eigenstructure assignment in linear systems. IEEE Trans Autom Control, 1993, 38: 276-280 CrossRef Google Scholar

[27] Duan G R, Liu G P, Thompson S. Disturbance Attenuation in Luenberger Function Observer Designs - A Parametric Approach. IFAC Proc Volumes, 2000, 33: 41-46 CrossRef Google Scholar

[28] Duan G R, Thompson S, Liu G P. Separation principle for robust pole assignment-an advantage of full-order state observers. In: Proceedings of the 38th IEEE Conference on Decision and Control, Arizona, USA, 1999. 76--78. Google Scholar

[29] Wu Y L, Lin B, Zeng H B. Parametric multi-objective design for spacecrafts with super flexible netted antennas (in Chinese). Control Theory Appl, 2019, 36: 766--773. Google Scholar

  • Figure 1

    Control system structure.

  • Figure 2

    Structure of classic PID controller.

  • Figure 3

    (Color online) The index values $J_{\mathrm{sen}}$ under the two control methods.

  • Figure 4

    (Color online) Dynamic responses. (a) Pitch angle; (b) pitch anglular velocity; (c) control input.

  • Table 1  

    Table 1Symbols

    Symbol Meaning
    $\mathrm{diag}\left(~s_{1},s_{2},\ldots,s_{n}\right)$$\text{Diagonal~matrix~with~}s_{1},s_{2},\ldots,s_{n}\text{~as~diagonal~elements}$
    $\lambda~_{i}(~M~)$textThe $i$text-th eigenvalue of matrix $M$
    $\mathrm{trace}(~M~)$textSum of diagonal elements of matrix $M$
    $\mathrm{blockdiag}\left(~M_{1},M_{2},\ldots,M_{n}\right)$textBlock diagonal matrix with $M_{1},M_{2},\ldots,M_{n}$text as diagonal elements
    $\mathrm{vec}(~[ \begin{array}{cccc} \eta~_{1}~&~\eta~_{2}~&~\cdots~&~\eta~_{n} \end{array} ]~)$$[ \begin{array}{cccc} \eta~_{1}^{\mathrm{T}}~&~\eta~_{2}^{\mathrm{T}}~&~\cdots~&~\eta~_{n}^{\mathrm{T} } \end{array} ]~^{\mathrm{T}}$
    $\mathrm{unvec}(~[ \begin{array}{cccc} \eta~_{1}^{\mathrm{T}}~&~\eta~_{2}^{\mathrm{T}}~&~\cdots~&~\eta~_{n}^{\mathrm{T} } \end{array} ]~^{\mathrm{T}})$$[ \begin{array}{cccc} \eta~_{1}~&~\eta~_{2}~&~\cdots~&~\eta~_{n} \end{array} ] $
    $A\otimes~B$ $\text{Kronecker~product~of~}A\text{~and~}B$
    $I_{n}$ $\text{Identity~matrix~of~$n$-order~}$
    $\mathrm{eig}(~M~)$ $\text{Set~of~eigenvalues~of~matrix~}M$
qqqq

Contact and support