logo

SCIENCE CHINA Information Sciences, Volume 64 , Issue 5 : 152209(2021) https://doi.org/10.1007/s11432-020-3059-9

In-hand manipulation of a circular dynamic object by soft fingertips without angle measurement

More info
  • ReceivedMay 12, 2020
  • AcceptedSep 1, 2020
  • PublishedApr 8, 2021

Abstract


Supplement

Appendix

According to 24, the matrix $\boldsymbol{A}~=~\left[\boldsymbol{A}_{1},~\boldsymbol{A}_{2}\right]~\in~\mathbb{R}^{11~\times~6}$ is defined as \begin{align*}\boldsymbol{A}_{1} = \begin{bmatrix} \boldsymbol{J}_{1}^{\rm T}\begin{bmatrix}c_1 \\ - s_1\end{bmatrix} & \boldsymbol{0}_{4\times 1} & - \frac{\partial}{\partial\boldsymbol{q}_{1}}\varphi_{r_{1}} & \boldsymbol{0}_{4\times 1} \\ \boldsymbol{0}_{4\times 1} & \boldsymbol{J}_{2}^{\rm T}\begin{bmatrix} - c_2 \\ s_2\end{bmatrix} & \boldsymbol{0}_{4\times 1} & - \frac{\partial}{\partial\boldsymbol{q}_{2}}\varphi_{r_{2}} \\ - c_1 & c_2 & -J_{x_1} & -J_{x_2} \\ s_1 & - s_2 & -J_{y_1} & -J_{y_2} \\ 0 & 0 & R & -R\end{bmatrix}, \boldsymbol{A}_{2} = \begin{bmatrix} \bar{a}_1\begin{bmatrix}s_1 \\ c_1\end{bmatrix} & \boldsymbol{0}_{4\times 1} & \dfrac{\beta_{\theta}}{D_L}\boldsymbol{J}_{1}^{\rm T}\begin{bmatrix}y_1-y_2 \\ x_2-x_1\end{bmatrix} \\ \bar{a}_2 \begin{bmatrix}s_2 \\ c_2\end{bmatrix} & \boldsymbol{0}_{4\times 1} & -\dfrac{\beta_{\theta}}{D_L}\boldsymbol{J}_{2}^{\rm T}\begin{bmatrix}y_1-y_2 \\ x_2-x_1\end{bmatrix} \\ J_{x_1} + J_{x_2} & 0 & 0 \\ J_{y_1} + J_{y_2} & 0 & 0 \\ 0 & -\frac{1}{2}Rf_dD_{12} & 0 \end{bmatrix} \end{align*} for $\bar{a}_i=r_iD_i^{-1}~\boldsymbol{J}_{i}^{\rm~T}$, $J_{x_1}~=~\frac{\partial}{\partial\boldsymbol{x}}\varphi_{r_{1}}$, $J_{y_1}~=~\frac{\partial}{\partial\boldsymbol{y}}\varphi_{r_{1}}$, $J_{x_2}~=~\frac{\partial}{\partial\boldsymbol{x}}\varphi_{r_{2}}$, $J_{y_2}=~\frac{\partial}{\partial\boldsymbol{y}}\varphi_{r_{2}}$.


References

[1] Bicchi A. Hands for dexterous manipulation and robust grasping: a difficult road toward simplicity. IEEE Trans Robot Automat, 2000, 16: 652-662 CrossRef Google Scholar

[2] Mattar E. A survey of bio-inspired robotics hands implementation: New directions in dexterous manipulation. Robotics Autonomous Syst, 2013, 61: 517-544 CrossRef Google Scholar

[3] Salisbury J-K. Kinematics and force analysis of articulated hands. Dissertation for Ph.D. Degree. Stanford: Stanford University, 1982. Google Scholar

[4] Cole A B A, Hauser J E, Sastry S S. Kinematics and control of multifingered hands with rolling contact. IEEE Trans Automat Contr, 1989, 34: 398-404 CrossRef Google Scholar

[5] Murray R, Li Z X, Sastry S S. A Mathematical Introduction to Robotic Manipulation. Boca Raton: CRC Press, 1994. Google Scholar

[6] Parra-Vega V, Rodríguez-Angeles A, Arimoto S. J Intelligent Robotic Syst, 2001, 32: 235-254 CrossRef Google Scholar

[7] Bicchi A, Gabiccini M, Santello M. Modelling natural and artificial hands with synergies. Phil Trans R Soc B, 2011, 366: 3153-3161 CrossRef Google Scholar

[8] Stramigioli S. Modeling and IPC control of interactive mechanical systems — a coordinate-free approach. In: Lecture Notes in Control and Information Sciences. Berlin: Springer, 2003. Google Scholar

[9] Karayiannidis Y, Doulgeri Z. Adaptive control of robot contact tasks with on-line learning of planar surfaces. Automatica, 2009, 45: 2374-2382 CrossRef Google Scholar

[10] Karayiannidis Y, Rovithakis G, Doulgeri Z. Force/position tracking for a robotic manipulator in compliant contact with a surface using neuro-adaptive control. Automatica, 2007, 43: 1281-1288 CrossRef Google Scholar

[11] Fasoulas J, Sfakiotakis M. Modeling and Control for Object Manipulation by a Two d.o.f. Robotic Hand with Soft Fingertips. IFAC Proc Volumes, 2012, 45: 259-264 CrossRef Google Scholar

[12] Jia Y-B. Grasping curved objects through rolling. In: Proceedings of IEEE International Conference on Robotics and Automation, 2000. 377--382. Google Scholar

[13] Harada K, Kaneko M. Rolling based manipulation under neighborhood equilibrium, robotics and automation. In: Proceedings of IEEE International Conference on Robotics and Automation, 2001. 2492--2498. Google Scholar

[14] Ito S, Mizukoshi Y, Sasaki M. Numerical analysis for optimal posture of circular object grasped with frictions. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007. 1545--1550. Google Scholar

[15] Nakashima A, Nagase K, Hayakawa Y. Simultaneous control of grasping/manipulation and contact points with rolling contact. In: Proceedings of the 16th IFAC World Congress, 2005. Google Scholar

[16] Song S K, Park J B, Choi Y H. Dual-Fingered Stable Grasping Control for an Optimal Force Angle. IEEE Trans Robot, 2012, 28: 256-262 CrossRef Google Scholar

[17] Marigo A, Bicchi A. Rolling bodies with regular surface: controllability theory and applications. IEEE Trans Automat Contr, 2000, 45: 1586-1599 CrossRef Google Scholar

[18] Morio Y, Arimoto S, Bae J-H. Blind grasp and manipulation of a rigid object by a pair of robot fingers with soft tips. In: Proceedings of IEEE International Conference on Robotics and Automation, 2007. 4707--4714. Google Scholar

[19] Akella P, Cutkosky M. Manipulating with soft fingers: modeling contacts and dynamics. In: Proceedings of International Conference on Robotics and Automation, 1989. 767--769. Google Scholar

[20] Arimoto S, Nguyen P T A, Han H Y. Dynamics and control of a set of dual fingers with soft tips. Robotica, 2000, 18: 71-80 CrossRef Google Scholar

[21] Arimoto S. Control Theory Of Multi Fingered Hands. Berlin: Springer, 2008. Google Scholar

[22] Latash M L, Zatsiorsky V. Principle of superposition in human prehension. In: Advances in Robot Control: From Everyday Physics to Human-Like Movements. Berlin: Springer, 2006. 249--261. Google Scholar

[23] Santello M, Bianchi M, Gabiccini M. Towards a synergy framework across neuroscience and robotics: Lessons learned and open questions. Reply to comments on: “Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands”. Phys Life Rev, 2016, 17: 54-60 CrossRef ADS Google Scholar

[24] Shibata M, Hirai S. Stability and graspability analysis in grasping task taking fingertip dynamics into consideration. In: Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004. 3686--3691. Google Scholar

[25] Inoue T, Hirai S. Why humans can manipulate objects despite a time delay in the nervous system. In: The Human Hand as an Inspiration for Robot Hand Development. Cham: Springer, 2014. Google Scholar

[26] Wimboeck T, Ott C, Hirzinger G G. Passivity-based object-level impedance control for a multifingered hand. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006. 4621--4627. Google Scholar

[27] Ozawa R, Arimoto S, Nguyen P T A, et al. Manipulation of a circular object in a horizontal plane by two finger robots. In: Proceedings of IEEE International Conference on Robotics and Biomimetics, 2004. 517--522. Google Scholar

[28] Nguyen P T A, Ozawa R, Arimoto S. Manipulation of a circular object by a pair of multi-DOF robotic fingers. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006. 5669--5674. Google Scholar

[29] Ozawa R, Arimoto S, Nguyen P T A, et al. Manipulation of a circular object without object information. In: Proceedings of International Conference on Intelligent Robots and Systems, 2005. 1832--1838. Google Scholar

[30] Grammatikopoulou M, Psomopoulou E, Droukas L, et al. A controller for stable grasping and desired finger shaping without contact sensing. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 2014. 3662--3668. Google Scholar

[31] Psomopoulou E, Karashima D, Doulgeri Z. Stable pinching by controlling finger relative orientation of robotic fingers with rolling soft tips. Robotica, 2018, 36: 204-224 CrossRef Google Scholar

[32] Nakashima A, Shibata T, Hayakawa Y. Grasp and manipulation by soft finger with 3-dimensional deformation. In: Proceedings of SPIE, 2008. 6794. Google Scholar

[33] Roa M A, Suárez R. Grasp quality measures: review and performance. Auton Robot, 2015, 38: 65-88 CrossRef Google Scholar

[34] Coelho J A, Grupen R A. Optimal multifingered grasp synthesis. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, 1994. 1937--1942. Google Scholar

[35] Wen S Q, Wu T J. Computation for Maximum Stable Grasping in Dynamic Force Distribution. J Intell Robot Syst, 2012, 68: 225-243 CrossRef Google Scholar

[36] Kim B, Oh S, Yi B, et al. Optimal grasping based on non-dimensionalized performance indices. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2001. 949--956. Google Scholar

[37] Harada K, Tsuji T, Uto S, et al. Stability of soft-finger grasp under gravity. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). 2014. 883--888. Google Scholar

[38] Shibata M, Hirai S. Stability and graspability analysis in grasping task taking fingertip dynamics into consideration. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004. 3686--3691. Google Scholar

[39] Assaf T, Roke C, Rossiter J. Seeing by Touch: Evaluation of a Soft Biologically-Inspired Artificial Fingertip in Real-Time Active Touch. Sensors, 2014, 14: 2561-2577 CrossRef Google Scholar

[40] Ascari L, Bertocchi U, Corradi P. Bio-inspired grasp control in a robotic hand with massive sensorial input. Biol Cybern, 2009, 100: 109-128 CrossRef Google Scholar

[41] Dang H, Allen P K. Stable grasping under pose uncertainty using tactile feedback. Auton Robot, 2014, 36: 309-330 CrossRef Google Scholar

[42] Iberall T, Bingham G, Arbib M A. Opposition space as a structuring concept for the analysis of skilled hand movements. In: Experimental Brain Research Series 15 - Generation and Modulation of Action Patterns. Berlin: Springer-Verlag, 1986. 158--173. Google Scholar

[43] Garcia-Rodriguez R, Villalva-Lucio M, Parra-Vega V. Dexterous dynamic optimal grasping of a circular object with pose regulation using redundant robotic soft-fingertips. In: Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015. 6231--6237. Google Scholar

[44] García-Rodríguez R, Villalva-Lucio M, Parra-Vega V. Dexterous Dynamic Optimal Grasping of a Circular Object subject to Gravity with Soft-fingertips. IFAC-PapersOnLine, 2015, 48: 220-225 CrossRef Google Scholar

[45] Amodio P, Mazzia F. Numerical solution of differential algebraic equations and computation of consistent initial/boundary conditions. J Comput Appl Math, 1997, 87: 135-146 CrossRef Google Scholar

[46] Napier J, Tuttle R H, Russell H. Hands. Princeton: Princeton University Press, 1993. Google Scholar

[47] Mason M T. Mechanics of Robotic Manipulation. Cambridge: MIT Press, 2001. Google Scholar

[48] Bogacki P, Shampine L F. A 3(2) pair of Runge - Kutta formulas. Appl Math Lett, 1989, 2: 321-325 CrossRef Google Scholar

[49] Baumgarte J. Stabilization of constraints and integrals of motion in dynamical systems. Comput Methods Appl Mech Eng, 1972, 1: 1-16 CrossRef Google Scholar

  • Figure 1

    (Color online) Grasp and orientation of a circular object by pads of the thumb and index fingers.

  • Figure 2

    Kinematics of hemispherical soft-fingertip hand grasping a circular object.

  • Figure 3

    Kinematic relationships at contact, where the normal force relative angle $\beta(\bar{\boldsymbol{\nu}})~=~\alpha_{1}-~\alpha_{2}+~\pi~\in~\mathbb{R}$ is depicted. All angles are measured according to the right-hand rule and being consistent with the inertial frame, i.e., in (a) $\alpha_1<0$, $\alpha_2>0$, $\phi_1<0$, $\phi_2<0$, and for (b) $\alpha_1>0$, $\alpha_2<0$, $\phi_1>0$, $\phi_2>0$.

  • Figure 4

    (Color online) The optimal grasping of a circular object [44].

  • Figure 5

    (Color online) Proposed optimal grasping and orientation control of a circular object with $\theta_d=0$ rad.

  • Figure 6

    Optimal grasping with $\beta_d=\pi$.

  • Figure 7

    (Color online) Optimal grasping: (a) ${\rm~CoM}_o$ and the object angle $\theta$, (b) internal angles $\alpha_i$, for $i=1,2$.

  • Figure 8

    Optimal grasping and orientation control with $\beta_d=\pi-\theta_d$.

  • Figure 9

    (Color online) Optimal grasping and orientation control: (a) ${\rm~CoM}_o$, (b) internal angles $\alpha_i$, (c) the object angle $\theta$, protectłinebreak (d) orientation angle error $\overline{\Delta\theta}$.

  • Figure 10

    (Color online) Comparative study between the proposed approach and [43]: object coordinates, internal angles and error angles. (a) Without object angle measurement; (b) with object angle measurement.

  • Figure 11

    Optimal grasping and orientation control with $\beta_d=\pi-\theta_d$ and $\theta_d=-0.2$ rad.

  • Figure 12

    (Color online) Optimal grasping and orientation control with $\theta_d=-0.2$ rad: (a) ${\rm~CoM}_o$, (b) $\hat{\theta}$, (c) the object angle $\theta$, (d) orientation angle error $\overline{\Delta\theta}$.

  • Figure 13

    (Color online) Optimal grasping under gravity effect: performance of the $\Delta~f_i$ and the object coordinates, $i=1,2$, where $\bar{p}(0)~=~[0.15,~0.2]^{\rm~T}$ m and $\theta~(0)$ = 0.0 rad with $f_d~=~2.5$ N and $\theta_d~=~0$ rad. (a) Contact force error; (b) object coordinates.

  • Figure 14

    (Color online) Optimal grasping under gravity effect: performance of the $\Delta~f_i$ and the object coordinates, $i=1,2$, where $\bar{p}(0)~=~[0.075,~0.155]^{\rm~T}$ m and $\theta(0)~=~0.0$ rad with $f_d~=~2.5$ N and $\theta_d~=~0.2$ rad. (a) Contact force error; (b) object coordinates.

  • Figure 15

    (Color online) Performance of the stable grasping and orientation of a circular object avoiding any object information: (a) $t=0$ s, (b) $t=5$ s, (c) $t=10$ s, (d) $t=15$ s, (e) $t=20$ s. (f) $t=25$ s.

  • Table 1  

    Table 1Physical parameters of the robotic fingers

    Parameter Value (m) Parameter Value
    $L_{i1}$ $0.1$ $M_{i1}$ $0.5$ kg
    $L_{i2}$ $0.08$ $M_{i2}$ $0.3$ kg
    $L_{i3}$ $0.06$ $M_{i3}$ $0.15$ kg
    $L_{i4}$ $0.03$ $M_{i4}$ $0.1$ kg
    $l_{cm_{i1}}$ $0.045$ $I_{i1}$ $6.5\times~10^{-4}$ kg$\cdot$m$^{2}$
    $l_{cm_{i2}}$ $0.035$ $I_{i2}$ $2.5\times10^{-4}$ kg$\cdot$m$^{2}$
    $l_{cm_{i3}}$ $0.025$ $I_{i3}$ $5\times~10^{-5}$ kg$\cdot$m$^{2}$
    $l_{cm_{i4}}$ $0.01$ $I_{i4}$ $2\times~10^{-6}$ kg$\cdot$m$^{2}$
qqqq

Contact and support