References
[1]
Zeng
Y,
Zhang
R,
Lim
T J.
Wireless communications with unmanned aerial vehicles: opportunities and challenges.
IEEE Commun Mag,
2016, 54: 36-42
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wireless communications with unmanned aerial vehicles: opportunities and challenges&author=Zeng Y&author=Zhang R&author=Lim T J&publication_year=2016&journal=IEEE Commun Mag&volume=54&pages=36-42
[2]
Zeng
Y,
Wu
Q,
Zhang
R.
Accessing From the Sky: A Tutorial on UAV Communications for 5G and Beyond.
Proc IEEE,
2019, 107: 2327-2375
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Accessing From the Sky: A Tutorial on UAV Communications for 5G and Beyond&author=Zeng Y&author=Wu Q&author=Zhang R&publication_year=2019&journal=Proc IEEE&volume=107&pages=2327-2375
[3]
Johnson W. Helicopter Theory. Courier Corporation, 2012.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Johnson W. Helicopter Theory. Courier Corporation, 2012&
[4]
Filippone A. Flight Performance of Fixed and Rotary Wing Aircraft. Amsterdam: Elsevier, 2009.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Filippone A. Flight Performance of Fixed and Rotary Wing Aircraft. Amsterdam: Elsevier, 2009&
[5]
Walid S, Bennis M, Mozaffari M, et al. Wireless Communications and Networking for Unmanned Aerial Vehicles. Cambridge: Cambridge University Press, 2020.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Walid S, Bennis M, Mozaffari M, et al. Wireless Communications and Networking for Unmanned Aerial Vehicles. Cambridge: Cambridge University Press, 2020&
[6]
Mozaffari
M,
Saad
W,
Bennis
M.
A Tutorial on UAVs for Wireless Networks: Applications, Challenges, and Open Problems.
IEEE Commun Surv Tutorials,
2019, 21: 2334-2360
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Tutorial on UAVs for Wireless Networks: Applications, Challenges, and Open Problems&author=Mozaffari M&author=Saad W&author=Bennis M&publication_year=2019&journal=IEEE Commun Surv Tutorials&volume=21&pages=2334-2360
[7]
Hayat
S,
Yanmaz
E,
Muzaffar
R.
Survey on Unmanned Aerial Vehicle Networks for Civil Applications: A Communications Viewpoint.
IEEE Commun Surv Tutorials,
2016, 18: 2624-2661
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Survey on Unmanned Aerial Vehicle Networks for Civil Applications: A Communications Viewpoint&author=Hayat S&author=Yanmaz E&author=Muzaffar R&publication_year=2016&journal=IEEE Commun Surv Tutorials&volume=18&pages=2624-2661
[8]
Shakhatreh
H,
Sawalmeh
A H,
Al-Fuqaha
A.
Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges.
IEEE Access,
2019, 7: 48572-48634
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges&author=Shakhatreh H&author=Sawalmeh A H&author=Al-Fuqaha A&publication_year=2019&journal=IEEE Access&volume=7&pages=48572-48634
[9]
Gupta
L,
Jain
R,
Vaszkun
G.
Survey of Important Issues in UAV Communication Networks.
IEEE Commun Surv Tutorials,
2016, 18: 1123-1152
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Survey of Important Issues in UAV Communication Networks&author=Gupta L&author=Jain R&author=Vaszkun G&publication_year=2016&journal=IEEE Commun Surv Tutorials&volume=18&pages=1123-1152
[10]
Cao
X,
Yang
P,
Alzenad
M.
Airborne Communication Networks: A Survey.
IEEE J Sel Areas Commun,
2018, 36: 1907-1926
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Airborne Communication Networks: A Survey&author=Cao X&author=Yang P&author=Alzenad M&publication_year=2018&journal=IEEE J Sel Areas Commun&volume=36&pages=1907-1926
[11]
Jiang
J,
Han
G.
Routing Protocols for Unmanned Aerial Vehicles.
IEEE Commun Mag,
2018, 56: 58-63
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Routing Protocols for Unmanned Aerial Vehicles&author=Jiang J&author=Han G&publication_year=2018&journal=IEEE Commun Mag&volume=56&pages=58-63
[12]
Bekmezci
,
Sahingoz
O K,
Temel
.
Flying Ad-Hoc Networks (FANETs): A survey.
Ad Hoc Networks,
2013, 11: 1254-1270
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Flying Ad-Hoc Networks (FANETs): A survey&author=Bekmezci &author=Sahingoz O K&author=Temel &publication_year=2013&journal=Ad Hoc Networks&volume=11&pages=1254-1270
[13]
Hossein Motlagh
N,
Taleb
T,
Arouk
O.
Low-Altitude Unmanned Aerial Vehicles-Based Internet of Things Services: Comprehensive Survey and Future Perspectives.
IEEE Internet Things J,
2016, 3: 899-922
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Low-Altitude Unmanned Aerial Vehicles-Based Internet of Things Services: Comprehensive Survey and Future Perspectives&author=Hossein Motlagh N&author=Taleb T&author=Arouk O&publication_year=2016&journal=IEEE Internet Things J&volume=3&pages=899-922
[14]
Mozaffari
M,
Saad
W,
Bennis
M.
Unmanned Aerial Vehicle With Underlaid Device-to-Device Communications: Performance and Tradeoffs.
IEEE Trans Wireless Commun,
2016, 15: 3949-3963
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Unmanned Aerial Vehicle With Underlaid Device-to-Device Communications: Performance and Tradeoffs&author=Mozaffari M&author=Saad W&author=Bennis M&publication_year=2016&journal=IEEE Trans Wireless Commun&volume=15&pages=3949-3963
[15]
Zhang
S,
Zhang
H,
Di
B.
Cellular UAV-to-X Communications: Design and Optimization for Multi-UAV Networks.
IEEE Trans Wireless Commun,
2019, 18: 1346-1359
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cellular UAV-to-X Communications: Design and Optimization for Multi-UAV Networks&author=Zhang S&author=Zhang H&author=Di B&publication_year=2019&journal=IEEE Trans Wireless Commun&volume=18&pages=1346-1359
[16]
Cheng
N,
Xu
W,
Shi
W.
Air-Ground Integrated Mobile Edge Networks: Architecture, Challenges, and Opportunities.
IEEE Commun Mag,
2018, 56: 26-32
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Air-Ground Integrated Mobile Edge Networks: Architecture, Challenges, and Opportunities&author=Cheng N&author=Xu W&author=Shi W&publication_year=2018&journal=IEEE Commun Mag&volume=56&pages=26-32
[17]
Chen
M,
Mozaffari
M,
Saad
W.
Caching in the Sky: Proactive Deployment of Cache-Enabled Unmanned Aerial Vehicles for Optimized Quality-of-Experience.
IEEE J Sel Areas Commun,
2017, 35: 1046-1061
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Caching in the Sky: Proactive Deployment of Cache-Enabled Unmanned Aerial Vehicles for Optimized Quality-of-Experience&author=Chen M&author=Mozaffari M&author=Saad W&publication_year=2017&journal=IEEE J Sel Areas Commun&volume=35&pages=1046-1061
[18]
Lu
M,
Bagheri
M,
James
A P.
Wireless Charging Techniques for UAVs: A Review, Reconceptualization, and Extension.
IEEE Access,
2018, 6: 29865-29884
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wireless Charging Techniques for UAVs: A Review, Reconceptualization, and Extension&author=Lu M&author=Bagheri M&author=James A P&publication_year=2018&journal=IEEE Access&volume=6&pages=29865-29884
[19]
Van Der Bergh
B,
Chiumento
A,
Pollin
S.
LTE in the sky: trading off propagation benefits with interference costs for aerial nodes.
IEEE Commun Mag,
2016, 54: 44-50
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=LTE in the sky: trading off propagation benefits with interference costs for aerial nodes&author=Van Der Bergh B&author=Chiumento A&author=Pollin S&publication_year=2016&journal=IEEE Commun Mag&volume=54&pages=44-50
[20]
Zeng
Y,
Lyu
J,
Zhang
R.
Cellular-Connected UAV: Potential, Challenges, and Promising Technologies.
IEEE Wireless Commun,
2019, 26: 120-127
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cellular-Connected UAV: Potential, Challenges, and Promising Technologies&author=Zeng Y&author=Lyu J&author=Zhang R&publication_year=2019&journal=IEEE Wireless Commun&volume=26&pages=120-127
[21]
Lin
X,
Yajnanarayana
V,
Muruganathan
S D.
The Sky Is Not the Limit: LTE for Unmanned Aerial Vehicles.
IEEE Commun Mag,
2018, 56: 204-210
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The Sky Is Not the Limit: LTE for Unmanned Aerial Vehicles&author=Lin X&author=Yajnanarayana V&author=Muruganathan S D&publication_year=2018&journal=IEEE Commun Mag&volume=56&pages=204-210
[22]
Fotouhi
A,
Qiang
H,
Ding
M.
Survey on UAV Cellular Communications: Practical Aspects, Standardization Advancements, Regulation, and Security Challenges.
IEEE Commun Surv Tutorials,
2019, 21: 3417-3442
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Survey on UAV Cellular Communications: Practical Aspects, Standardization Advancements, Regulation, and Security Challenges&author=Fotouhi A&author=Qiang H&author=Ding M&publication_year=2019&journal=IEEE Commun Surv Tutorials&volume=21&pages=3417-3442
[23]
Dochev I N, Docheva L E, Manev S. Embedding of Communication and Measurement Equipment in Drones. In: Proceedings of 2018 IX National Conference with International Participation (ELECTRONICA), Sofia, 2018. 1--4.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dochev I N, Docheva L E, Manev S. Embedding of Communication and Measurement Equipment in Drones. In: Proceedings of 2018 IX National Conference with International Participation (ELECTRONICA), Sofia, 2018. 1--4&
[24]
Wilkins G, Fourie D, Meyer J. Critical design parameters for a low altitude long endurance solar powered UAV. In: Proceedings of AFRICON 2009, Nairobi, 2009. 1--6.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wilkins G, Fourie D, Meyer J. Critical design parameters for a low altitude long endurance solar powered UAV. In: Proceedings of AFRICON 2009, Nairobi, 2009. 1--6&
[25]
Lu
M,
Bagheri
M,
James
A P.
Wireless Charging Techniques for UAVs: A Review, Reconceptualization, and Extension.
IEEE Access,
2018, 6: 29865-29884
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wireless Charging Techniques for UAVs: A Review, Reconceptualization, and Extension&author=Lu M&author=Bagheri M&author=James A P&publication_year=2018&journal=IEEE Access&volume=6&pages=29865-29884
[26]
Ouyang J, Che Y, Xu J, et al. Throughput maximization for laser-powered UAV wireless communication systems. In: Proceedings of IEEE International Conference on Communications Workshops (ICC Workshops), Kansas City, 2018. 1--6.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ouyang J, Che Y, Xu J, et al. Throughput maximization for laser-powered UAV wireless communication systems. In: Proceedings of IEEE International Conference on Communications Workshops (ICC Workshops), Kansas City, 2018. 1--6&
[27]
Zhao
M M,
Shi
Q,
Zhao
M J.
Efficiency Maximization for UAV-Enabled Mobile Relaying Systems With Laser Charging.
IEEE Trans Wireless Commun,
2020, 19: 3257-3272
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Efficiency Maximization for UAV-Enabled Mobile Relaying Systems With Laser Charging&author=Zhao M M&author=Shi Q&author=Zhao M J&publication_year=2020&journal=IEEE Trans Wireless Commun&volume=19&pages=3257-3272
[28]
Lim
H,
Park
J,
Lee
D.
Build Your Own Quadrotor: Open-Source Projects on Unmanned Aerial Vehicles.
IEEE Robot Automat Mag,
2012, 19: 33-45
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Build Your Own Quadrotor: Open-Source Projects on Unmanned Aerial Vehicles&author=Lim H&author=Park J&author=Lee D&publication_year=2012&journal=IEEE Robot Automat Mag&volume=19&pages=33-45
[29]
Nunns G J, Chen Y, Chang D, et al. Autonomous Flying WiFi Access Point. In: Proceedings of 2019 IEEE International Symposium on Computers and Communications (ISCC), Barcelona, 2019. 278--283.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nunns G J, Chen Y, Chang D, et al. Autonomous Flying WiFi Access Point. In: Proceedings of 2019 IEEE International Symposium on Computers and Communications (ISCC), Barcelona, 2019. 278--283&
[30]
Vilhar A, Hrovat A, Javornik T, et al. Experimental analysis of wireless temporary networks deployed by low altitude platforms. In: Proceedings of 2013 IEEE 18th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Berlin, 2013. 238--242.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Vilhar A, Hrovat A, Javornik T, et al. Experimental analysis of wireless temporary networks deployed by low altitude platforms. In: Proceedings of 2013 IEEE 18th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Berlin, 2013. 238--242&
[31]
Gu Y, Zhou M, Fu S, et al. Airborne WiFi networks through directional antennae: an experimental study. In: Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), New Orleans, 2015. 1314--1319.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gu Y, Zhou M, Fu S, et al. Airborne WiFi networks through directional antennae: an experimental study. In: Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), New Orleans, 2015. 1314--1319&
[32]
Godoy J A, Cabrera F, Araza V, et al. A new approach of V2X communications for long range applications in UAVs. In: Proceedings of 2018 2nd URSI Atlantic Radio Science Meeting (AT-RASC), Meloneras, 2018. 1--4.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Godoy J A, Cabrera F, Araza V, et al. A new approach of V2X communications for long range applications in UAVs. In: Proceedings of 2018 2nd URSI Atlantic Radio Science Meeting (AT-RASC), Meloneras, 2018. 1--4&
[33]
Dambal V A, Mohadikar S, Kumbhar A, et al. Improving LoRa signal coverage in urban and sub-urban environments with UAVs. In: Proceedings of International Workshop on Antenna Technology (iWAT), Miami, 2019. 210--213.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dambal V A, Mohadikar S, Kumbhar A, et al. Improving LoRa signal coverage in urban and sub-urban environments with UAVs. In: Proceedings of International Workshop on Antenna Technology (iWAT), Miami, 2019. 210--213&
[34]
Muruganathan S, Lin X, Maattanen H, et al. An overview of 3GPP release-15 study on enhanced LTE support for connected drones. 2018,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Muruganathan S, Lin X, Maattanen H, et al. An overview of 3GPP release-15 study on enhanced LTE support for connected drones. 2018,&
[35]
Powell K, Sabri A, Brennan D, et al. Software Radios for Unmanned Aerial Systems. 2020,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Powell K, Sabri A, Brennan D, et al. Software Radios for Unmanned Aerial Systems. 2020,&
[36]
Marojevic V, Guvenc I, Sichitiu M L, et al. An experimental research platform architecture for UAS communications and networking. In: Proceedings of 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, 2019. 1--5.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Marojevic V, Guvenc I, Sichitiu M L, et al. An experimental research platform architecture for UAS communications and networking. In: Proceedings of 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, 2019. 1--5&
[37]
Ye X, Cai X, Yin X, et al. Air-to-ground big-data-assisted channel modeling based on passive sounding in LTE networks. In: Proceedings of 2017 IEEE Global Communications Conference (GC Wkshps), Singapore, 2017. 1--6.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ye X, Cai X, Yin X, et al. Air-to-ground big-data-assisted channel modeling based on passive sounding in LTE networks. In: Proceedings of 2017 IEEE Global Communications Conference (GC Wkshps), Singapore, 2017. 1--6&
[38]
Gutierrez R M, Yu H, Rong Y, et al. Time and frequency dispersion characteristics of the UAS wireless channel in residential and mountainous desert terrains. in Proc. IEEE Annual Consumer Communications and Networking Conference (CCNC), Las Vegas, 2017. 516--521.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gutierrez R M, Yu H, Rong Y, et al. Time and frequency dispersion characteristics of the UAS wireless channel in residential and mountainous desert terrains. in Proc. IEEE Annual Consumer Communications and Networking Conference (CCNC), Las Vegas, 2017. 516--521&
[39]
Khawaja W, Ozdemir O, Guvenc I. UAV Air-to-Ground Channel Characterization for mmWave Systems. In: Proceedings of 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, 2017. 1--5.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Khawaja W, Ozdemir O, Guvenc I. UAV Air-to-Ground Channel Characterization for mmWave Systems. In: Proceedings of 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, 2017. 1--5&
[40]
Izydorczyk T, Bucur M, Tavares F M L, et al. Experimental evaluation of multi-antenna receivers for UAV communication in live LTE networks. In: Proceedings of 2018 IEEE Global Communications Conference (GC Wkshps), Abu Dhabi, 2018. 1--6.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Izydorczyk T, Bucur M, Tavares F M L, et al. Experimental evaluation of multi-antenna receivers for UAV communication in live LTE networks. In: Proceedings of 2018 IEEE Global Communications Conference (GC Wkshps), Abu Dhabi, 2018. 1--6&
[41]
Careem M A A, Gomez J, Saha D, et al. HiPER-V: a high precision radio frequency vehicle for aerial measurements. In: Proceedings of 2019 16th Annual IEEE International Conference on Sensing, Communication and Networking (SECON), Boston, 2019. 1--6.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Careem M A A, Gomez J, Saha D, et al. HiPER-V: a high precision radio frequency vehicle for aerial measurements. In: Proceedings of 2019 16th Annual IEEE International Conference on Sensing, Communication and Networking (SECON), Boston, 2019. 1--6&
[42]
Koubaa
A,
Allouch
A,
Alajlan
M.
Micro Air Vehicle Link (MAVlink) in a Nutshell: A Survey.
IEEE Access,
2019, 7: 87658-87680
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Micro Air Vehicle Link (MAVlink) in a Nutshell: A Survey&author=Koubaa A&author=Allouch A&author=Alajlan M&publication_year=2019&journal=IEEE Access&volume=7&pages=87658-87680
[43]
Shi Y, Wensowitch J, Ward A, et al. Building UAV-based testbeds for autonomous mobility and beamforming experimentation. In: Proceedings of 2018 IEEE International Conference on Sensing, Communication and Networking (SECON Workshops), Hong Kong, 2018. 1--5.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shi Y, Wensowitch J, Ward A, et al. Building UAV-based testbeds for autonomous mobility and beamforming experimentation. In: Proceedings of 2018 IEEE International Conference on Sensing, Communication and Networking (SECON Workshops), Hong Kong, 2018. 1--5&
[44]
Matolak D W. Air-Ground Channels Models: Comprehensive Review and Considerations for Unmanned Aircraft Systems. In: Proceedings of IEEE Aerospace Conference, 2012. 1--17.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Matolak D W. Air-Ground Channels Models: Comprehensive Review and Considerations for Unmanned Aircraft Systems. In: Proceedings of IEEE Aerospace Conference, 2012. 1--17&
[45]
Khawaja
W,
Guvenc
I,
Matolak
D W.
A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles.
IEEE Commun Surv Tutorials,
2019, 21: 2361-2391
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles&author=Khawaja W&author=Guvenc I&author=Matolak D W&publication_year=2019&journal=IEEE Commun Surv Tutorials&volume=21&pages=2361-2391
[46]
Matolak
D W,
Ruoyu Sun
D W.
Unmanned Aircraft Systems: Air-Ground Channel Characterization for Future Applications.
IEEE Veh Technol Mag,
2015, 10: 79-85
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Unmanned Aircraft Systems: Air-Ground Channel Characterization for Future Applications&author=Matolak D W&author=Ruoyu Sun D W&publication_year=2015&journal=IEEE Veh Technol Mag&volume=10&pages=79-85
[47]
Khuwaja
A A,
Chen
Y,
Zhao
N.
A Survey of Channel Modeling for UAV Communications.
IEEE Commun Surv Tutorials,
2018, 20: 2804-2821
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Survey of Channel Modeling for UAV Communications&author=Khuwaja A A&author=Chen Y&author=Zhao N&publication_year=2018&journal=IEEE Commun Surv Tutorials&volume=20&pages=2804-2821
[48]
Al-Hourani A, Kandeepan S, Jamalipour A. Modeling air-to-ground path loss for low altitude platforms in urban environments. In: Proceedings of IEEE Global Communications Conference (GLOBECOM), Austin, 2014. 2898--2904.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Al-Hourani A, Kandeepan S, Jamalipour A. Modeling air-to-ground path loss for low altitude platforms in urban environments. In: Proceedings of IEEE Global Communications Conference (GLOBECOM), Austin, 2014. 2898--2904&
[49]
Al-Hourani
A,
Kandeepan
S,
Lardner
S.
Optimal LAP Altitude for Maximum Coverage.
IEEE Wireless Commun Lett,
2014, 3: 569-572
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Optimal LAP Altitude for Maximum Coverage&author=Al-Hourani A&author=Kandeepan S&author=Lardner S&publication_year=2014&journal=IEEE Wireless Commun Lett&volume=3&pages=569-572
[50]
Feng Q, McGeehan J, Tameh E K, et al. Path loss models for air-to-ground radio channels in urban environments. In: Proceedings of 2006 IEEE 63rd Vehicular Technology Conference (VTC), Melbourne, 2006. 2901--2905.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Feng Q, McGeehan J, Tameh E K, et al. Path loss models for air-to-ground radio channels in urban environments. In: Proceedings of 2006 IEEE 63rd Vehicular Technology Conference (VTC), Melbourne, 2006. 2901--2905&
[51]
Alzenad M, El-Keyi A, Lagum F, et al. 3-D Placement of an Unmanned Aerial Vehicle Base Station (UAV-BS) for Energy-Efficient Maximal Coverage. IEEE Wireless Commun. Lett. 2017, 6: 434--437 DOI 10.1109/LWC.2017.2700840.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Alzenad M, El-Keyi A, Lagum F, et al. 3-D Placement of an Unmanned Aerial Vehicle Base Station (UAV-BS) for Energy-Efficient Maximal Coverage. IEEE Wireless Commun. Lett. 2017, 6: 434--437 DOI 10.1109/LWC.2017.2700840&
[52]
Matolak
D W,
Sun
R.
Air-Ground Channel Characterization for Unmanned Aircraft Systems-Part I: Methods, Measurements, and Models for Over-Water Settings.
IEEE Trans Veh Technol,
2017, 66: 26-44
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Air-Ground Channel Characterization for Unmanned Aircraft Systems-Part I: Methods, Measurements, and Models for Over-Water Settings&author=Matolak D W&author=Sun R&publication_year=2017&journal=IEEE Trans Veh Technol&volume=66&pages=26-44
[53]
Matolak
D W,
Sun
R.
Air-Ground Channel Characterization for Unmanned Aircraft Systems-Part III: The Suburban and Near-Urban Environments.
IEEE Trans Veh Technol,
2017, 66: 6607-6618
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Air-Ground Channel Characterization for Unmanned Aircraft Systems-Part III: The Suburban and Near-Urban Environments&author=Matolak D W&author=Sun R&publication_year=2017&journal=IEEE Trans Veh Technol&volume=66&pages=6607-6618
[54]
Matolak
D W,
Sun
R.
Air-Ground Channel Characterization for Unmanned Aircraft Systems-Part III: The Suburban and Near-Urban Environments.
IEEE Trans Veh Technol,
2017, 66: 6607-6618
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Air-Ground Channel Characterization for Unmanned Aircraft Systems-Part III: The Suburban and Near-Urban Environments&author=Matolak D W&author=Sun R&publication_year=2017&journal=IEEE Trans Veh Technol&volume=66&pages=6607-6618
[55]
Newhall W G, Mostafa R, Dietrich C, et al. Wideband air-to-ground radio channel measurements using an antenna array at 2 GHz for low-altitude operations. In: Proceedings of IEEE Military Communications Conference, Boston, 2003. 1422--1427.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Newhall W G, Mostafa R, Dietrich C, et al. Wideband air-to-ground radio channel measurements using an antenna array at 2 GHz for low-altitude operations. In: Proceedings of IEEE Military Communications Conference, Boston, 2003. 1422--1427&
[56]
Khawaja W, Guvenc I, Matolak D. UWB channel sounding and modeling for UAV air-to-ground propagation channels. In: Proceedings of 2016 IEEE Global Communications Conference (GLOBECOM), Washington, 2016. 1--7.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Khawaja W, Guvenc I, Matolak D. UWB channel sounding and modeling for UAV air-to-ground propagation channels. In: Proceedings of 2016 IEEE Global Communications Conference (GLOBECOM), Washington, 2016. 1--7&
[57]
Willink
T J,
Squires
C C,
Colman
G W K.
Measurement and Characterization of Low-Altitude Air-to-Ground MIMO Channels.
IEEE Trans Veh Technol,
2016, 65: 2637-2648
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Measurement and Characterization of Low-Altitude Air-to-Ground MIMO Channels&author=Willink T J&author=Squires C C&author=Colman G W K&publication_year=2016&journal=IEEE Trans Veh Technol&volume=65&pages=2637-2648
[58]
Wang N, Yin X, Cai X, et al. A novel air-to-ground channel modeling method based on graph model. In: Proceedings of 2019 13th European Conference on Antennas and Propagation (EuCAP), Krakow, 2019. 1--5.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang N, Yin X, Cai X, et al. A novel air-to-ground channel modeling method based on graph model. In: Proceedings of 2019 13th European Conference on Antennas and Propagation (EuCAP), Krakow, 2019. 1--5&
[59]
Amorim R, Nguyen H, Wigard J, et al. LTE radio measurements above urban rooftops for aerial communications. In: Proceedings of 2018 IEEE Wireless Communications & Networking Conference (WCNC), Barcelona, 2018, pp. 1-6.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Amorim R, Nguyen H, Wigard J, et al. LTE radio measurements above urban rooftops for aerial communications. In: Proceedings of 2018 IEEE Wireless Communications & Networking Conference (WCNC), Barcelona, 2018, pp. 1-6&
[60]
Liu
T,
Zhang
Z,
Jiang
H.
Measurement-Based Characterization and Modeling for Low-Altitude UAV Air-to-Air Channels.
IEEE Access,
2019, 7: 98832-98840
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Measurement-Based Characterization and Modeling for Low-Altitude UAV Air-to-Air Channels&author=Liu T&author=Zhang Z&author=Jiang H&publication_year=2019&journal=IEEE Access&volume=7&pages=98832-98840
[61]
Cai
X,
Rodriguez-Pineiro
J,
Yin
X.
An Empirical Air-to-Ground Channel Model Based on Passive Measurements in LTE.
IEEE Trans Veh Technol,
2019, 68: 1140-1154
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=An Empirical Air-to-Ground Channel Model Based on Passive Measurements in LTE&author=Cai X&author=Rodriguez-Pineiro J&author=Yin X&publication_year=2019&journal=IEEE Trans Veh Technol&volume=68&pages=1140-1154
[62]
Qiu
Z,
Chu
X,
Calvo-Ramirez
C.
Low Altitude UAV Air-to-Ground Channel Measurement and Modeling in Semiurban Environments.
Wireless Commun Mobile Computing,
2017, 2017: 1-11
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Low Altitude UAV Air-to-Ground Channel Measurement and Modeling in Semiurban Environments&author=Qiu Z&author=Chu X&author=Calvo-Ramirez C&publication_year=2017&journal=Wireless Commun Mobile Computing&volume=2017&pages=1-11
[63]
Shi Y, Enami R, Wensowitch J, et al. Measurement-based characterization of LOS and NLOS drone-to-ground channels. In: Proceedings of 2018 IEEE Wireless Communications & Networking Conference (WCNC), Barcelona, 2018. 1--6.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shi Y, Enami R, Wensowitch J, et al. Measurement-based characterization of LOS and NLOS drone-to-ground channels. In: Proceedings of 2018 IEEE Wireless Communications & Networking Conference (WCNC), Barcelona, 2018. 1--6&
[64]
Amorim
R,
Nguyen
H,
Mogensen
P.
Radio Channel Modeling for UAV Communication Over Cellular Networks.
IEEE Wireless Commun Lett,
2017, 6: 514-517
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Radio Channel Modeling for UAV Communication Over Cellular Networks&author=Amorim R&author=Nguyen H&author=Mogensen P&publication_year=2017&journal=IEEE Wireless Commun Lett&volume=6&pages=514-517
[65]
Al-Hourani
A,
Gomez
K.
Modeling Cellular-to-UAV Path-Loss for Suburban Environments.
IEEE Wireless Commun Lett,
2018, 7: 82-85
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Modeling Cellular-to-UAV Path-Loss for Suburban Environments&author=Al-Hourani A&author=Gomez K&publication_year=2018&journal=IEEE Wireless Commun Lett&volume=7&pages=82-85
[66]
Calvo-Ramírez C, Gonzalez-Plaza A, Briso C, et al. Wide Band Propagation Measurements and Modelling for Low Altitude UAVs. In: Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018), London, 2018. 1--5.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Calvo-Ramírez C, Gonzalez-Plaza A, Briso C, et al. Wide Band Propagation Measurements and Modelling for Low Altitude UAVs. In: Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018), London, 2018. 1--5&
[67]
Amorim R, Mogensen P, Sorensen T, et al. Pathloss measurements and modeling for UAVs connected to cellular networks. In: Proceedings of 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, 2017. 1--6.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Amorim R, Mogensen P, Sorensen T, et al. Pathloss measurements and modeling for UAVs connected to cellular networks. In: Proceedings of 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, 2017. 1--6&
[68]
Di Franco C, Buttazzo G. Energy-aware coverage path planning of UAVs. In: Proceedings of IEEE International Conference on Autonomous Robot Systems and Competitions, 2015. 111--117.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Di Franco C, Buttazzo G. Energy-aware coverage path planning of UAVs. In: Proceedings of IEEE International Conference on Autonomous Robot Systems and Competitions, 2015. 111--117&
[69]
Richards A, How J P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming. In: Proceedings of IEEE American Control Conference, 2002. 1936--1941.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Richards A, How J P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming. In: Proceedings of IEEE American Control Conference, 2002. 1936--1941&
[70]
Ma C S, Miller R H. MILP optimal path planning for real-time applications. In: Proceedings of IEEE American Control Conference, 2006. 6.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ma C S, Miller R H. MILP optimal path planning for real-time applications. In: Proceedings of IEEE American Control Conference, 2006. 6&
[71]
Gr?tli
E I,
Johansen
T A.
Path Planning for UAVs Under Communication Constraints Using SPLAT and MILP.
J Intell Robot Syst,
2012, 65: 265-282
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Path Planning for UAVs Under Communication Constraints Using SPLAT and MILP&author=Gr?tli E I&author=Johansen T A&publication_year=2012&journal=J Intell Robot Syst&volume=65&pages=265-282
[72]
Mei Y, Lu Y-H, Hu Y C, et al. Energy-efficient motion planning for mmobile robots. In: Proceedings of IEEE International Conference on Robotics and Automation, 2004. 4344--4349.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mei Y, Lu Y-H, Hu Y C, et al. Energy-efficient motion planning for mmobile robots. In: Proceedings of IEEE International Conference on Robotics and Automation, 2004. 4344--4349&
[73]
Zeng
Y,
Zhang
R.
Energy-Efficient UAV Communication With Trajectory Optimization.
IEEE Trans Wireless Commun,
2017, 16: 3747-3760
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Energy-Efficient UAV Communication With Trajectory Optimization&author=Zeng Y&author=Zhang R&publication_year=2017&journal=IEEE Trans Wireless Commun&volume=16&pages=3747-3760
[74]
Zeng
Y,
Xu
J,
Zhang
R.
Energy Minimization for Wireless Communication With Rotary-Wing UAV.
IEEE Trans Wireless Commun,
2019, 18: 2329-2345
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Energy Minimization for Wireless Communication With Rotary-Wing UAV&author=Zeng Y&author=Xu J&author=Zhang R&publication_year=2019&journal=IEEE Trans Wireless Commun&volume=18&pages=2329-2345
[75]
Gao N, Zeng Y, Wang J, et al. Energy Model for UAV Communications: Experimental Validation and Model Generalization. 2020,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gao N, Zeng Y, Wang J, et al. Energy Model for UAV Communications: Experimental Validation and Model Generalization. 2020,&
[76]
Technical Specification Group Radio Access Network: Study on enhanced LTE Support for Aerial Vehicles, document 3GPP TR 36.777 V15.0.0, 2017.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Technical Specification Group Radio Access Network: Study on enhanced LTE Support for Aerial Vehicles, document 3GPP TR 36.777 V15.0.0, 2017&
[77]
Izydorczyk T, Ginard M M, Svendsen S, et al. Experimental evaluation of beamforming on UAVs in cellular systems. 2020,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Izydorczyk T, Ginard M M, Svendsen S, et al. Experimental evaluation of beamforming on UAVs in cellular systems. 2020,&
[78]
Qualcomm. LTE Unmanned Aircraft Systems Trial Report. 2017. https://www.qualcomm.com/documents/lte-unmanned-aircraft-systems-trial-report.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Qualcomm. LTE Unmanned Aircraft Systems Trial Report. 2017. https://www.qualcomm.com/documents/lte-unmanned-aircraft-systems-trial-report&
[79]
Batistatos M C, Athanasiadou G E, Zarbouti D A, et al. LTE ground-to-air measurements for UAV-assisted cellular networks. In: Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018), London, 2018. 1--5.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Batistatos M C, Athanasiadou G E, Zarbouti D A, et al. LTE ground-to-air measurements for UAV-assisted cellular networks. In: Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018), London, 2018. 1--5&
[80]
Ivancic W D, Kerczewski R J, Murawski R W, et al. Flying drones beyond visual line of sight using 4G LTE: issues and concerns. In: Proceedings of 2019 International Conference on Networking and Services (ICNS), Herndon, 2019. 1--13.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ivancic W D, Kerczewski R J, Murawski R W, et al. Flying drones beyond visual line of sight using 4G LTE: issues and concerns. In: Proceedings of 2019 International Conference on Networking and Services (ICNS), Herndon, 2019. 1--13&
[81]
Jwa J W, Won J H. Network Quality Measurements of LTE Drones. Inter Eng J Technol 2018, 7: 54--57.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Jwa J W, Won J H. Network Quality Measurements of LTE Drones. Inter Eng J Technol 2018, 7: 54--57&
[82]
Kovacs I, Amorim R, Nguyen H C, et al. Interference analysis for UAV connectivity over LTE using aerial radio measurements. In: Proceedings of 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, 2017. 1--6.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kovacs I, Amorim R, Nguyen H C, et al. Interference analysis for UAV connectivity over LTE using aerial radio measurements. In: Proceedings of 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, 2017. 1--6&
[83]
Yang G, Lin X, Li Y, et al. A telecom perspective on the Internet of drones: from LTE-advanced to 5G. 2017,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yang G, Lin X, Li Y, et al. A telecom perspective on the Internet of drones: from LTE-advanced to 5G. 2017,&
[84]
Sae J, Wiren R, Kauppi J, et al. Public LTE network measurements with drones in rural environment. in proc. 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), Kuala Lumpur, 2019. 1--5.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sae J, Wiren R, Kauppi J, et al. Public LTE network measurements with drones in rural environment. in proc. 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), Kuala Lumpur, 2019. 1--5&
[85]
Nguyen
H C,
Amorim
R,
Wigard
J.
How to Ensure Reliable Connectivity for Aerial Vehicles Over Cellular Networks.
IEEE Access,
2018, 6: 12304-12317
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=How to Ensure Reliable Connectivity for Aerial Vehicles Over Cellular Networks&author=Nguyen H C&author=Amorim R&author=Wigard J&publication_year=2018&journal=IEEE Access&volume=6&pages=12304-12317
[86]
Li
S,
He
C,
Liu
M.
Design and implementation of aerial communication using directional antennas: learning control in unknown communication environments.
IET Contr Theor Applicat,
2019, 2: 2906-2916
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Design and implementation of aerial communication using directional antennas: learning control in unknown communication environments&author=Li S&author=He C&author=Liu M&publication_year=2019&journal=IET Contr Theor Applicat&volume=2&pages=2906-2916
[87]
Heimann K, Tiemann J, Boecker S, et al. On the potential of 5G mmWave pencil beam antennas for UAV communications: an experimental evaluation. In: Proceedings of the 22nd International ITG Workshop on Smart Antennas, Bochum, 2018. 1--6.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Heimann K, Tiemann J, Boecker S, et al. On the potential of 5G mmWave pencil beam antennas for UAV communications: an experimental evaluation. In: Proceedings of the 22nd International ITG Workshop on Smart Antennas, Bochum, 2018. 1--6&
[88]
Chandrasekharan
S,
Gomez
K,
Al-Hourani
A.
Designing and implementing future aerial communication networks.
IEEE Commun Mag,
2016, 54: 26-34
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Designing and implementing future aerial communication networks&author=Chandrasekharan S&author=Gomez K&author=Al-Hourani A&publication_year=2016&journal=IEEE Commun Mag&volume=54&pages=26-34
[89]
Gangula R, Esrafilian O, Gesbert D, et al. Flying rebots: first results on an autonomous UAV-based LTE relay using open airinterface. In: Proceedings of 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, 2018. 1--5.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gangula R, Esrafilian O, Gesbert D, et al. Flying rebots: first results on an autonomous UAV-based LTE relay using open airinterface. In: Proceedings of 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, 2018. 1--5&
[90]
Ono F, Takizawa K, Tsuji H, et al. Measurement of TCP and UDP performance over UAS relay networks. In: Proceedings of 2014 International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, 2014. 389--394.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ono F, Takizawa K, Tsuji H, et al. Measurement of TCP and UDP performance over UAS relay networks. In: Proceedings of 2014 International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, 2014. 389--394&
[91]
Guo W, Devine C, Wang S. Performance analysis of micro unmanned airborne communication relays for cellular networks. In: Proceedings of 2014 9th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Manchester, 2014. 658--663.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Guo W, Devine C, Wang S. Performance analysis of micro unmanned airborne communication relays for cellular networks. In: Proceedings of 2014 9th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Manchester, 2014. 658--663&
[92]
Moheddine A, Patrone F, Marchese M. UAV and IoT integration: a flying gateway. In: Proceedings of 2019 26th IEEE International Conferenceon Environmental and Computer Science (ICECS), Genoa, 2019. 121--122.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Moheddine A, Patrone F, Marchese M. UAV and IoT integration: a flying gateway. In: Proceedings of 2019 26th IEEE International Conferenceon Environmental and Computer Science (ICECS), Genoa, 2019. 121--122&
[93]
Popescu D, Stoican F, Ichim L, et al. Collaborative UAV-WSN system for data acquisition and processing in agriculture. In: Proceedings of 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Metz, 2019. 519--524.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Popescu D, Stoican F, Ichim L, et al. Collaborative UAV-WSN system for data acquisition and processing in agriculture. In: Proceedings of 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Metz, 2019. 519--524&
[94]
Liang
X,
Wang
Y,
Jaakkola
A.
Forest Data Collection Using Terrestrial Image-Based Point Clouds From a Handheld Camera Compared to Terrestrial and Personal Laser Scanning.
IEEE Trans Geosci Remote Sens,
2015, 53: 5117-5132
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Forest Data Collection Using Terrestrial Image-Based Point Clouds From a Handheld Camera Compared to Terrestrial and Personal Laser Scanning&author=Liang X&author=Wang Y&author=Jaakkola A&publication_year=2015&journal=IEEE Trans Geosci Remote Sens&volume=53&pages=5117-5132
[95]
Cao H, He W, Lv X, et al. Design and experiment of a WSN sink platform based on fixed wing unmanned aerial vehicles. In: Proceedings of 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi'an, 2016. 1271--1274.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cao H, He W, Lv X, et al. Design and experiment of a WSN sink platform based on fixed wing unmanned aerial vehicles. In: Proceedings of 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi'an, 2016. 1271--1274&
[96]
Chen
M,
Saad
W,
Yin
C.
Liquid State Machine Learning for Resource and Cache Management in LTE-U Unmanned Aerial Vehicle (UAV) Networks.
IEEE Trans Wireless Commun,
2019, 18: 1504-1517
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Liquid State Machine Learning for Resource and Cache Management in LTE-U Unmanned Aerial Vehicle (UAV) Networks&author=Chen M&author=Saad W&author=Yin C&publication_year=2019&journal=IEEE Trans Wireless Commun&volume=18&pages=1504-1517
[97]
Lu H, Zeng Y, Jin S, et al. Enabling panoramic full-angle reflection via aerial intelligent reflecting surface. 2020,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lu H, Zeng Y, Jin S, et al. Enabling panoramic full-angle reflection via aerial intelligent reflecting surface. 2020,&
[98]
Chen
M,
Challita
U,
Saad
W.
Artificial Neural Networks-Based Machine Learning for Wireless Networks: A Tutorial.
IEEE Commun Surv Tutorials,
2019, 21: 3039-3071
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Artificial Neural Networks-Based Machine Learning for Wireless Networks: A Tutorial&author=Chen M&author=Challita U&author=Saad W&publication_year=2019&journal=IEEE Commun Surv Tutorials&volume=21&pages=3039-3071
[99]
rezWideband Calvo-Ramírez C, Gonzalez-Plaza A, Briso C, et al. Wide Band Propagation Measurements and Modelling for Low Altitude UAVs. In: Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018), London, 2018. 1--5.
Google Scholar
http://scholar.google.com/scholar_lookup?title=rezWideband Calvo-Ramírez C, Gonzalez-Plaza A, Briso C, et al. Wide Band Propagation Measurements and Modelling for Low Altitude UAVs. In: Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018), London, 2018. 1--5&