References
[1]
Fu
C,
Chang
W,
Yang
S.
Multiple criteria group decision making based on group satisfaction.
Inf Sci,
2020, 518: 309-329
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multiple criteria group decision making based on group satisfaction&author=Fu C&author=Chang W&author=Yang S&publication_year=2020&journal=Inf Sci&volume=518&pages=309-329
[2]
Fu
C,
Chang
W,
Xue
M.
Multiple criteria group decision making with belief distributions and distributed preference relations.
Eur J Operational Res,
2019, 273: 623-633
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multiple criteria group decision making with belief distributions and distributed preference relations&author=Fu C&author=Chang W&author=Xue M&publication_year=2019&journal=Eur J Operational Res&volume=273&pages=623-633
[3]
He
Y,
Hu
L F,
Guan
X.
New method for measuring the degree of conflict among general basic probability assignments.
Sci China Inf Sci,
2012, 55: 312-321
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=New method for measuring the degree of conflict among general basic probability assignments&author=He Y&author=Hu L F&author=Guan X&publication_year=2012&journal=Sci China Inf Sci&volume=55&pages=312-321
[4]
Fei
L,
Feng
Y,
Liu
L.
Evidence combination using OWA?based soft likelihood functions.
Int J Intell Syst,
2019, 34: 2269-2290
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Evidence combination using OWA?based soft likelihood functions&author=Fei L&author=Feng Y&author=Liu L&publication_year=2019&journal=Int J Intell Syst&volume=34&pages=2269-2290
[5]
Liu
Z,
Pan
Q,
Dezert
J.
Classifier Fusion With Contextual Reliability Evaluation.
IEEE Trans Cybern,
2018, 48: 1605-1618
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Classifier Fusion With Contextual Reliability Evaluation&author=Liu Z&author=Pan Q&author=Dezert J&publication_year=2018&journal=IEEE Trans Cybern&volume=48&pages=1605-1618
[6]
Wu
B,
Yan
X,
Wang
Y.
An Evidential Reasoning-Based CREAM to Human Reliability Analysis in Maritime Accident Process.
Risk Anal,
2017, 37: 1936-1957
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=An Evidential Reasoning-Based CREAM to Human Reliability Analysis in Maritime Accident Process&author=Wu B&author=Yan X&author=Wang Y&publication_year=2017&journal=Risk Anal&volume=37&pages=1936-1957
[7]
Wang
Z,
Gao
J M,
Wang
R X.
Failure mode and effects analysis using Dempster-Shafer theory and TOPSIS method: Application to the gas insulated metal enclosed transmission line (GIL).
Appl Soft Computing,
2018, 70: 633-647
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Failure mode and effects analysis using Dempster-Shafer theory and TOPSIS method: Application to the gas insulated metal enclosed transmission line (GIL)&author=Wang Z&author=Gao J M&author=Wang R X&publication_year=2018&journal=Appl Soft Computing&volume=70&pages=633-647
[8]
Liu
Z G,
Liu
Y,
Dezert
J.
Evidence Combination Based on Credal Belief Redistribution for Pattern Classification.
IEEE Trans Fuzzy Syst,
2020, 28: 618-631
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Evidence Combination Based on Credal Belief Redistribution for Pattern Classification&author=Liu Z G&author=Liu Y&author=Dezert J&publication_year=2020&journal=IEEE Trans Fuzzy Syst&volume=28&pages=618-631
[9]
Pan
Y,
Zhang
L,
Wu
X.
Multi-classifier information fusion in risk analysis.
Inf Fusion,
2020, 60: 121-136
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multi-classifier information fusion in risk analysis&author=Pan Y&author=Zhang L&author=Wu X&publication_year=2020&journal=Inf Fusion&volume=60&pages=121-136
[10]
He
Y,
Jian
T,
Su
F.
Two adaptive detectors for range-spread targets in non-Gaussian clutter.
Sci China Inf Sci,
2011, 54: 386-395
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Two adaptive detectors for range-spread targets in non-Gaussian clutter&author=He Y&author=Jian T&author=Su F&publication_year=2011&journal=Sci China Inf Sci&volume=54&pages=386-395
[11]
Zadeh
L A.
Fuzzy sets.
Inf Control,
1965, 8: 338-353
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fuzzy sets&author=Zadeh L A&publication_year=1965&journal=Inf Control&volume=8&pages=338-353
[12]
Pawlak
Z.
Rough sets.
Int J Comput Inf Sci,
1982, 11: 341-356
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Rough sets&author=Pawlak Z&publication_year=1982&journal=Int J Comput Inf Sci&volume=11&pages=341-356
[13]
Dempster
A P.
Upper and Lower Probabilities Generated by a Random Closed Interval.
Ann Math Statist,
1968, 39: 957-966
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Upper and Lower Probabilities Generated by a Random Closed Interval&author=Dempster A P&publication_year=1968&journal=Ann Math Statist&volume=39&pages=957-966
[14]
Shafer G. A Mathematical Theory of Evidence. Princeton: Princeton University Press, 1976.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shafer G. A Mathematical Theory of Evidence. Princeton: Princeton University Press, 1976&
[15]
Atanassov
K T.
Intuitionistic fuzzy sets.
Fuzzy Sets Syst,
1986, 20: 87-96
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Intuitionistic fuzzy sets&author=Atanassov K T&publication_year=1986&journal=Fuzzy Sets Syst&volume=20&pages=87-96
[16]
Zadeh
L A.
A Note on Z-numbers.
Inf Sci,
2011, 181: 2923-2932
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Note on Z-numbers&author=Zadeh L A&publication_year=2011&journal=Inf Sci&volume=181&pages=2923-2932
[17]
Yager R R. Pythagorean fuzzy subsets. In: Proceedings of 2013 joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013. 57--61.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yager R R. Pythagorean fuzzy subsets. In: Proceedings of 2013 joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013. 57--61&
[18]
Fu
C,
Chang
W,
Xu
D.
An evidential reasoning approach based on criterion reliability and solution reliability.
Comput Industrial Eng,
2019, 128: 401-417
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=An evidential reasoning approach based on criterion reliability and solution reliability&author=Fu C&author=Chang W&author=Xu D&publication_year=2019&journal=Comput Industrial Eng&volume=128&pages=401-417
[19]
Xiao F. Generalization of Dempster--Shafer theory: A complex mass function. Applied Intelligence, 2019, pages DOI: 10.1007/s10489--019--01617--y.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Xiao F. Generalization of Dempster--Shafer theory: A complex mass function. Applied Intelligence, 2019, pages DOI: 10.1007/s10489--019--01617--y&
[20]
Generalized belief function in complex evidence theory.
IFS,
2020, 38: 3665-3673
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Generalized belief function in complex evidence theory&publication_year=2020&journal=IFS&volume=38&pages=3665-3673
[21]
Yang
J B.
Rule and utility based evidential reasoning approach for multiattribute decision analysis under uncertainties.
Eur J Operational Res,
2001, 131: 31-61
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Rule and utility based evidential reasoning approach for multiattribute decision analysis under uncertainties&author=Yang J B&publication_year=2001&journal=Eur J Operational Res&volume=131&pages=31-61
[22]
Jian-Bo Yang
,
Dong-Ling Xu
.
On the evidential reasoning algorithm for multiple attribute decision analysis under uncertainty.
IEEE Trans Syst Man Cybern A,
2002, 32: 289-304
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=On the evidential reasoning algorithm for multiple attribute decision analysis under uncertainty&author=Jian-Bo Yang &author=Dong-Ling Xu &publication_year=2002&journal=IEEE Trans Syst Man Cybern A&volume=32&pages=289-304
[23]
Yang
J B,
Xu
D L.
Evidential reasoning rule for evidence combination.
Artificial Intelligence,
2013, 205: 1-29
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Evidential reasoning rule for evidence combination&author=Yang J B&author=Xu D L&publication_year=2013&journal=Artificial Intelligence&volume=205&pages=1-29
[24]
Shannon
C E.
A Mathematical Theory of Communication.
Bell Syst Technical J,
1948, 27: 379-423
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Mathematical Theory of Communication&author=Shannon C E&publication_year=1948&journal=Bell Syst Technical J&volume=27&pages=379-423
[25]
Deng
Y.
Deng entropy.
Chaos Solitons Fractals,
2016, 91: 549-553
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deng entropy&author=Deng Y&publication_year=2016&journal=Chaos Solitons Fractals&volume=91&pages=549-553
[26]
Xiao
F.
EFMCDM: Evidential fuzzy multicriteria decision making based on belief entropy.
IEEE Trans Fuzzy Syst,
2019, : 1-1
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=EFMCDM: Evidential fuzzy multicriteria decision making based on belief entropy&author=Xiao F&publication_year=2019&journal=IEEE Trans Fuzzy Syst&pages=1-1
[27]
Xiao
F.
GIQ: A generalized intelligent quality-based approach for fusing multi-source information.
IEEE Trans Fuzzy Syst,
2020, : 1-1
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=GIQ: A generalized intelligent quality-based approach for fusing multi-source information&author=Xiao F&publication_year=2020&journal=IEEE Trans Fuzzy Syst&pages=1-1
[28]
Xiao
F.
Multi-sensor data fusion based on the belief divergence measure of evidences and the belief entropy.
Inf Fusion,
2019, 46: 23-32
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multi-sensor data fusion based on the belief divergence measure of evidences and the belief entropy&author=Xiao F&publication_year=2019&journal=Inf Fusion&volume=46&pages=23-32
[29]
Xiao
F.
A Distance Measure for Intuitionistic Fuzzy Sets and Its Application to Pattern Classification Problems.
IEEE Trans Syst Man Cybern Syst,
2020, : 1-13
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Distance Measure for Intuitionistic Fuzzy Sets and Its Application to Pattern Classification Problems&author=Xiao F&publication_year=2020&journal=IEEE Trans Syst Man Cybern Syst&pages=1-13
[30]
Xiao
F.
A new divergence measure for belief functions in D-S evidence theory for multisensor data fusion.
Inf Sci,
2020, 514: 462-483
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A new divergence measure for belief functions in D-S evidence theory for multisensor data fusion&author=Xiao F&publication_year=2020&journal=Inf Sci&volume=514&pages=462-483
[31]
Xiao
F.
CED: A Distance for Complex Mass Functions.
IEEE Trans Neural Netw Learning Syst,
2020, : 1-11
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=CED: A Distance for Complex Mass Functions&author=Xiao F&publication_year=2020&journal=IEEE Trans Neural Netw Learning Syst&pages=1-11
[32]
Hohle U. Entropy with respect to plausibility measures. In: Proceedings of the 12th IEEE International Symposium on Multiple Valued Logic, Paris, 1982.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hohle U. Entropy with respect to plausibility measures. In: Proceedings of the 12th IEEE International Symposium on Multiple Valued Logic, Paris, 1982&
[33]
Smets
P.
Information content of an evidence.
Int J Man-Machine Studies,
1983, 19: 33-43
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Information content of an evidence&author=Smets P&publication_year=1983&journal=Int J Man-Machine Studies&volume=19&pages=33-43
[34]
Yager
R R.
ENTROPY AND SPECIFICITY IN A MATHEMATICAL THEORY OF EVIDENCE.
Int J General Syst,
1983, 9: 249-260
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=ENTROPY AND SPECIFICITY IN A MATHEMATICAL THEORY OF EVIDENCE&author=Yager R R&publication_year=1983&journal=Int J General Syst&volume=9&pages=249-260
[35]
Dubois
D,
Prade
H.
Properties of measures of information in evidence and possibility theories.
Fuzzy Sets Syst,
1987, 24: 161-182
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Properties of measures of information in evidence and possibility theories&author=Dubois D&author=Prade H&publication_year=1987&journal=Fuzzy Sets Syst&volume=24&pages=161-182
[36]
Lamata
M T,
Moral
S.
MEASURES OF ENTROPY IN THE THEORY OF EVIDENCE.
Int J General Syst,
1988, 14: 297-305
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=MEASURES OF ENTROPY IN THE THEORY OF EVIDENCE&author=Lamata M T&author=Moral S&publication_year=1988&journal=Int J General Syst&volume=14&pages=297-305
[37]
Klir
G J,
Ramer
A.
UNCERTAINTY IN THE DEMPSTER-SHAFER THEORY: A CRITICAL RE-EXAMINATION.
Int J General Syst,
1990, 18: 155-166
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=UNCERTAINTY IN THE DEMPSTER-SHAFER THEORY: A CRITICAL RE-EXAMINATION&author=Klir G J&author=Ramer A&publication_year=1990&journal=Int J General Syst&volume=18&pages=155-166
[38]
Klir G J, Parviz B. A note on the measure of discord. In: Proceedings of Uncertainty in Artificial Intelligence, 1992. 138--141.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Klir G J, Parviz B. A note on the measure of discord. In: Proceedings of Uncertainty in Artificial Intelligence, 1992. 138--141&
[39]
Pal
N R,
Bezdek
J C,
Hemasinha
R.
Uncertainty measures for evidential reasoning I: A review.
Int J Approximate Reasoning,
1992, 7: 165-183
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Uncertainty measures for evidential reasoning I: A review&author=Pal N R&author=Bezdek J C&author=Hemasinha R&publication_year=1992&journal=Int J Approximate Reasoning&volume=7&pages=165-183
[40]
Pal
N R,
Bezdek
J C,
Hemasinha
R.
Uncertainty measures for evidential reasoning II: A new measure of total uncertainty.
Int J Approximate Reasoning,
1993, 8: 1-16
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Uncertainty measures for evidential reasoning II: A new measure of total uncertainty&author=Pal N R&author=Bezdek J C&author=Hemasinha R&publication_year=1993&journal=Int J Approximate Reasoning&volume=8&pages=1-16
[41]
George
T,
Pal
N R.
QUANTIFICATION OF CONFLICT IN DEMPSTER-SHAFER FRAMEWORK: A NEW APPROACH.
Int J General Syst,
1996, 24: 407-423
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=QUANTIFICATION OF CONFLICT IN DEMPSTER-SHAFER FRAMEWORK: A NEW APPROACH&author=George T&author=Pal N R&publication_year=1996&journal=Int J General Syst&volume=24&pages=407-423
[42]
Jousselme
A L,
Chunsheng Liu
A L,
Grenier
D.
Measuring ambiguity in the evidence theory.
IEEE Trans Syst Man Cybern A,
2006, 36: 890-903
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Measuring ambiguity in the evidence theory&author=Jousselme A L&author=Chunsheng Liu A L&author=Grenier D&publication_year=2006&journal=IEEE Trans Syst Man Cybern A&volume=36&pages=890-903
[43]
Jirou?ek
R,
Shenoy
P P.
A new definition of entropy of belief functions in the Dempster-Shafer theory.
Int J Approximate Reasoning,
2018, 92: 49-65
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A new definition of entropy of belief functions in the Dempster-Shafer theory&author=Jirou?ek R&author=Shenoy P P&publication_year=2018&journal=Int J Approximate Reasoning&volume=92&pages=49-65
[44]
Pan
Q,
Zhou
D,
Tang
Y.
A Novel Belief Entropy for Measuring Uncertainty in Dempster-Shafer Evidence Theory Framework Based on Plausibility Transformation and Weighted Hartley Entropy.
Entropy,
2019, 21: 163
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Novel Belief Entropy for Measuring Uncertainty in Dempster-Shafer Evidence Theory Framework Based on Plausibility Transformation and Weighted Hartley Entropy&author=Pan Q&author=Zhou D&author=Tang Y&publication_year=2019&journal=Entropy&volume=21&pages=163
[45]
Wen
K,
Song
Y,
Wu
C.
A Novel Measure of Uncertainty in the Dempster-Shafer Theory.
IEEE Access,
2020, 8: 51550-51559
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Novel Measure of Uncertainty in the Dempster-Shafer Theory&author=Wen K&author=Song Y&author=Wu C&publication_year=2020&journal=IEEE Access&volume=8&pages=51550-51559
[46]
Wang
X,
Song
Y.
Uncertainty measure in evidence theory with its applications.
Appl Intell,
2018, 48: 1672-1688
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Uncertainty measure in evidence theory with its applications&author=Wang X&author=Song Y&publication_year=2018&journal=Appl Intell&volume=48&pages=1672-1688
[47]
Yang
Y,
Han
D.
A new distance-based total uncertainty measure in the theory of belief functions.
Knowledge-Based Syst,
2016, 94: 114-123
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A new distance-based total uncertainty measure in the theory of belief functions&author=Yang Y&author=Han D&publication_year=2016&journal=Knowledge-Based Syst&volume=94&pages=114-123
[48]
Deng
X,
Xiao
F,
Deng
Y.
An improved distance-based total uncertainty measure in belief function theory.
Appl Intell,
2017, 46: 898-915
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=An improved distance-based total uncertainty measure in belief function theory&author=Deng X&author=Xiao F&author=Deng Y&publication_year=2017&journal=Appl Intell&volume=46&pages=898-915
[49]
Deng
X.
Analyzing the monotonicity of belief interval based uncertainty measures in belief function theory.
Int J Intell Syst,
2018, 33: 1869-1879
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Analyzing the monotonicity of belief interval based uncertainty measures in belief function theory&author=Deng X&publication_year=2018&journal=Int J Intell Syst&volume=33&pages=1869-1879
[50]
Deng
X,
Jiang
W.
A total uncertainty measure for D numbers based on belief intervals.
Int J Intell Syst,
2019, 34: 3302-3316
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A total uncertainty measure for D numbers based on belief intervals&author=Deng X&author=Jiang W&publication_year=2019&journal=Int J Intell Syst&volume=34&pages=3302-3316
[51]
Xia
J,
Feng
Y,
Liu
L.
On entropy function and reliability indicator for D numbers.
Appl Intell,
2019, 49: 3248-3266
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=On entropy function and reliability indicator for D numbers&author=Xia J&author=Feng Y&author=Liu L&publication_year=2019&journal=Appl Intell&volume=49&pages=3248-3266
[52]
Yager
R R.
Interval valued entropies for Dempster-Shafer structures.
Knowledge-Based Syst,
2018, 161: 390-397
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Interval valued entropies for Dempster-Shafer structures&author=Yager R R&publication_year=2018&journal=Knowledge-Based Syst&volume=161&pages=390-397
[53]
Klir G J, Wierman M J. Uncertainty-based information: elements of generalized information theory. Berlin: Springer, 1999.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Klir G J, Wierman M J. Uncertainty-based information: elements of generalized information theory. Berlin: Springer, 1999&
[54]
Klir G J. Uncertainty and information: foundations of generalized information theory. Piscataway: Wiley-IEEE Press, 2006.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Klir G J. Uncertainty and information: foundations of generalized information theory. Piscataway: Wiley-IEEE Press, 2006&
[55]
Abe S, Okamoto Y. Nonextensive Statistical Mechanics and Its Applications. Berlin: Springer, 2001.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Abe S, Okamoto Y. Nonextensive Statistical Mechanics and Its Applications. Berlin: Springer, 2001&
[56]
Tsallis
C.
Possible generalization of Boltzmann-Gibbs statistics.
J Stat Phys,
1988, 52: 479-487
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Possible generalization of Boltzmann-Gibbs statistics&author=Tsallis C&publication_year=1988&journal=J Stat Phys&volume=52&pages=479-487
[57]
Wang
D,
Gao
J,
Wei
D.
A New Belief Entropy Based on Deng Entropy.
Entropy,
2019, 21: 987
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A New Belief Entropy Based on Deng Entropy&author=Wang D&author=Gao J&author=Wei D&publication_year=2019&journal=Entropy&volume=21&pages=987
[58]
Ozkan K. Comparing Shannon entropy with Deng entropy and improved Deng entropy for measuring biodiversity when a priori data is not clear. Journal of the faculty of forestry- Istanbul University, 2018, 68:136--140 DOI: 10.26650/forestist.2018.340634.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ozkan K. Comparing Shannon entropy with Deng entropy and improved Deng entropy for measuring biodiversity when a priori data is not clear. Journal of the faculty of forestry- Istanbul University, 2018, 68:136--140 DOI: 10.26650/forestist.2018.340634&
[59]
Li
J,
Pan
Q.
A New Belief Entropy in Dempster-Shafer Theory Based on Basic Probability Assignment and the Frame of Discernment.
Entropy,
2020, 22: 691
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A New Belief Entropy in Dempster-Shafer Theory Based on Basic Probability Assignment and the Frame of Discernment&author=Li J&author=Pan Q&publication_year=2020&journal=Entropy&volume=22&pages=691
[60]
Zhou
Q,
Mo
H,
Deng
Y.
A New Divergence Measure of Pythagorean Fuzzy Sets Based on Belief Function and Its Application in Medical Diagnosis.
Mathematics,
2020, 8: 142
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A New Divergence Measure of Pythagorean Fuzzy Sets Based on Belief Function and Its Application in Medical Diagnosis&author=Zhou Q&author=Mo H&author=Deng Y&publication_year=2020&journal=Mathematics&volume=8&pages=142
[61]
Kuzemsky A. Temporal evolution, directionality of time and irreversibility. La Rivista del Nuovo Cimento, 2018, 41:513--574 DOI: 10.1393/ncr/i2018-10152-0.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kuzemsky A. Temporal evolution, directionality of time and irreversibility. La Rivista del Nuovo Cimento, 2018, 41:513--574 DOI: 10.1393/ncr/i2018-10152-0&
[62]
Jiang
W,
Wang
S.
An Uncertainty Measure for Interval-valued Evidences.
INT J COMPUT COMMUN,
2017, 12: 631
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=An Uncertainty Measure for Interval-valued Evidences&author=Jiang W&author=Wang S&publication_year=2017&journal=INT J COMPUT COMMUN&volume=12&pages=631
[63]
Mambe
M D,
N'Takpe
T,
Georges
N.
A New Uncertainty Measure in Belief Entropy Framework.
ijacsa,
2018, 9
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A New Uncertainty Measure in Belief Entropy Framework&author=Mambe M D&author=N'Takpe T&author=Georges N&publication_year=2018&journal=ijacsa&volume=9&
[64]
Xie
K,
Xiao
F.
Negation of Belief Function Based on the Total Uncertainty Measure.
Entropy,
2019, 21: 73
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Negation of Belief Function Based on the Total Uncertainty Measure&author=Xie K&author=Xiao F&publication_year=2019&journal=Entropy&volume=21&pages=73
[65]
Zhao
Y,
Ji
D,
Yang
X.
An Improved Belief Entropy to Measure Uncertainty of Basic Probability Assignments Based on Deng Entropy and Belief Interval.
Entropy,
2019, 21: 1122
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=An Improved Belief Entropy to Measure Uncertainty of Basic Probability Assignments Based on Deng Entropy and Belief Interval&author=Zhao Y&author=Ji D&author=Yang X&publication_year=2019&journal=Entropy&volume=21&pages=1122
[66]
Evidence combination method in time domain based on reliability and importance.
J Syst Eng Electron,
2018, 29: 1308-1316
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Evidence combination method in time domain based on reliability and importance&publication_year=2018&journal=J Syst Eng Electron&volume=29&pages=1308-1316
[67]
Vandoni
J,
Aldea
E,
Le Hégarat-Mascle
S.
Evidential query-by-committee active learning for pedestrian detection in high-density crowds.
Int J Approximate Reasoning,
2019, 104: 166-184
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Evidential query-by-committee active learning for pedestrian detection in high-density crowds&author=Vandoni J&author=Aldea E&author=Le Hégarat-Mascle S&publication_year=2019&journal=Int J Approximate Reasoning&volume=104&pages=166-184
[68]
Khan
M N,
Anwar
S.
Time-Domain Data Fusion Using Weighted Evidence and Dempster-Shafer Combination Rule: Application in Object Classification.
Sensors,
2019, 19: 5187
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Time-Domain Data Fusion Using Weighted Evidence and Dempster-Shafer Combination Rule: Application in Object Classification&author=Khan M N&author=Anwar S&publication_year=2019&journal=Sensors&volume=19&pages=5187
[69]
Pan
L,
Deng
Y.
Probability Transform Based on the Ordered Weighted Averaging and Entropy Difference.
INT J COMPUT COMMUN,
2020, 15
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Probability Transform Based on the Ordered Weighted Averaging and Entropy Difference&author=Pan L&author=Deng Y&publication_year=2020&journal=INT J COMPUT COMMUN&volume=15&
[70]
Wang
Y,
Liu
F,
Zhu
A.
Bearing Fault Diagnosis Based on a Hybrid Classifier Ensemble Approach and the Improved Dempster-Shafer Theory.
Sensors,
2019, 19: 2097
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bearing Fault Diagnosis Based on a Hybrid Classifier Ensemble Approach and the Improved Dempster-Shafer Theory&author=Wang Y&author=Liu F&author=Zhu A&publication_year=2019&journal=Sensors&volume=19&pages=2097
[71]
Zhang
Y,
Liu
Y,
Zhang
Z.
A Weighted Evidence Combination Approach for Target Identification in Wireless Sensor Networks.
IEEE Access,
2017, 5: 21585-21596
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Weighted Evidence Combination Approach for Target Identification in Wireless Sensor Networks&author=Zhang Y&author=Liu Y&author=Zhang Z&publication_year=2017&journal=IEEE Access&volume=5&pages=21585-21596
[72]
Abellán
J.
Analyzing properties of Deng entropy in the theory of evidence.
Chaos Solitons Fractals,
2017, 95: 195-199
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Analyzing properties of Deng entropy in the theory of evidence&author=Abellán J&publication_year=2017&journal=Chaos Solitons Fractals&volume=95&pages=195-199
[73]
Kang
B,
Deng
Y.
The Maximum Deng Entropy.
IEEE Access,
2019, 7: 120758
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The Maximum Deng Entropy&author=Kang B&author=Deng Y&publication_year=2019&journal=IEEE Access&volume=7&pages=120758
[74]
Deng Y. The information volume of uncertain informaion: (1) mass function. 2020. viXra:2006.0028.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deng Y. The information volume of uncertain informaion: (1) mass function. 2020. viXra:2006.0028&
[75]
Tsallis
C,
Gell-Mann
M,
Sato
Y.
Asymptotically scale-invariant occupancy of phase space makes the entropy Sq extensive.
Proc Natl Acad Sci USA,
2005, 102: 15377-15382
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Asymptotically scale-invariant occupancy of phase space makes the entropy Sq extensive&author=Tsallis C&author=Gell-Mann M&author=Sato Y&publication_year=2005&journal=Proc Natl Acad Sci USA&volume=102&pages=15377-15382
[76]
Gao
X,
Deng
Y.
The Pseudo-Pascal Triangle of Maximum Deng Entropy.
INT J COMPUT COMMUN,
2020, 15
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The Pseudo-Pascal Triangle of Maximum Deng Entropy&author=Gao X&author=Deng Y&publication_year=2020&journal=INT J COMPUT COMMUN&volume=15&
[77]
Liu
F,
Gao
X,
Zhao
J.
Generalized Belief Entropy and Its Application in Identifying Conflict Evidence.
IEEE Access,
2019, 7: 126625
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Generalized Belief Entropy and Its Application in Identifying Conflict Evidence&author=Liu F&author=Gao X&author=Zhao J&publication_year=2019&journal=IEEE Access&volume=7&pages=126625
[78]
Song
Y,
Deng
Y.
Divergence Measure of Belief Function and Its Application in Data Fusion.
IEEE Access,
2019, 7: 107465
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Divergence Measure of Belief Function and Its Application in Data Fusion&author=Song Y&author=Deng Y&publication_year=2019&journal=IEEE Access&volume=7&pages=107465
[79]
Gao
X,
Liu
F,
Pan
L.
Uncertainty measure based on Tsallis entropy in evidence theory.
Int J Intell Syst,
2019, 34: 3105-3120
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Uncertainty measure based on Tsallis entropy in evidence theory&author=Gao X&author=Liu F&author=Pan L&publication_year=2019&journal=Int J Intell Syst&volume=34&pages=3105-3120
[80]
Pan
L,
Deng
Y.
A New Belief Entropy to Measure Uncertainty of Basic Probability Assignments Based on Belief Function and Plausibility Function.
Entropy,
2018, 20: 842
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A New Belief Entropy to Measure Uncertainty of Basic Probability Assignments Based on Belief Function and Plausibility Function&author=Pan L&author=Deng Y&publication_year=2018&journal=Entropy&volume=20&pages=842
[81]
Li
Y,
Deng
Y.
Generalized Ordered Propositions Fusion Based on Belief Entropy.
INT J COMPUT COMMUN,
2018, 13: 792-807
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Generalized Ordered Propositions Fusion Based on Belief Entropy&author=Li Y&author=Deng Y&publication_year=2018&journal=INT J COMPUT COMMUN&volume=13&pages=792-807
[82]
Song
Y,
Deng
Y.
A new method to measure the divergence in evidential sensor data fusion.
Int J Distributed Sens Networks,
2019, 15: 155014771984129
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A new method to measure the divergence in evidential sensor data fusion&author=Song Y&author=Deng Y&publication_year=2019&journal=Int J Distributed Sens Networks&volume=15&pages=155014771984129
[83]
Xiao
F.
An Improved Method for Combining Conflicting Evidences Based on the Similarity Measure and Belief Function Entropy.
Int J Fuzzy Syst,
2018, 20: 1256-1266
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=An Improved Method for Combining Conflicting Evidences Based on the Similarity Measure and Belief Function Entropy&author=Xiao F&publication_year=2018&journal=Int J Fuzzy Syst&volume=20&pages=1256-1266
[84]
Boulkaboul
S,
Djenouri
D.
DFIOT: Data Fusion for Internet of Things.
J Netw Syst Manage,
2020, 54
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=DFIOT: Data Fusion for Internet of Things&author=Boulkaboul S&author=Djenouri D&publication_year=2020&journal=J Netw Syst Manage&volume=54&
[85]
Xiao
F,
Qin
B.
A Weighted Combination Method for Conflicting Evidence in Multi-Sensor Data Fusion.
Sensors,
2018, 18: 1487
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Weighted Combination Method for Conflicting Evidence in Multi-Sensor Data Fusion&author=Xiao F&author=Qin B&publication_year=2018&journal=Sensors&volume=18&pages=1487
[86]
An
J,
Hu
M,
Fu
L.
A Novel Fuzzy Approach for Combining Uncertain Conflict Evidences in the Dempster-Shafer Theory.
IEEE Access,
2019, 7: 7481-7501
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Novel Fuzzy Approach for Combining Uncertain Conflict Evidences in the Dempster-Shafer Theory&author=An J&author=Hu M&author=Fu L&publication_year=2019&journal=IEEE Access&volume=7&pages=7481-7501
[87]
Wang
J,
Qiao
K,
Zhang
Z.
An improvement for combination rule in evidence theory.
Future Generation Comput Syst,
2019, 91: 1-9
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=An improvement for combination rule in evidence theory&author=Wang J&author=Qiao K&author=Zhang Z&publication_year=2019&journal=Future Generation Comput Syst&volume=91&pages=1-9
[88]
Tang
Y,
Zhou
D,
Chan
F.
An Extension to Deng's Entropy in the Open World Assumption with an Application in Sensor Data Fusion.
Sensors,
2018, 18: 1902
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=An Extension to Deng's Entropy in the Open World Assumption with an Application in Sensor Data Fusion&author=Tang Y&author=Zhou D&author=Chan F&publication_year=2018&journal=Sensors&volume=18&pages=1902
[89]
Hurley J, Johnson C, Dunham J, et al. Nonlinear algorithms for combining conflicting identification information in multisensor fusion. In: Proceedings of 2019 IEEE Aerospace Conference, 2019. 1--7.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hurley J, Johnson C, Dunham J, et al. Nonlinear algorithms for combining conflicting identification information in multisensor fusion. In: Proceedings of 2019 IEEE Aerospace Conference, 2019. 1--7&
[90]
Liu
Z,
Xiao
F.
An Evidential Aggregation Method of Intuitionistic Fuzzy Sets Based on Belief Entropy.
IEEE Access,
2019, 7: 68905-68916
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=An Evidential Aggregation Method of Intuitionistic Fuzzy Sets Based on Belief Entropy&author=Liu Z&author=Xiao F&publication_year=2019&journal=IEEE Access&volume=7&pages=68905-68916
[91]
Wang
Z,
Xiao
F.
An Improved Multi-Source Data Fusion Method Based on the Belief Entropy and Divergence Measure.
Entropy,
2019, 21: 611
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=An Improved Multi-Source Data Fusion Method Based on the Belief Entropy and Divergence Measure&author=Wang Z&author=Xiao F&publication_year=2019&journal=Entropy&volume=21&pages=611
[92]
Fan
X,
Guo
Y,
Ju
Y.
Multisensor Fusion Method Based on the Belief Entropy and DS Evidence Theory.
J Sens,
2020, 2020(10): 1-16
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multisensor Fusion Method Based on the Belief Entropy and DS Evidence Theory&author=Fan X&author=Guo Y&author=Ju Y&publication_year=2020&journal=J Sens&volume=2020(10)&pages=1-16
[93]
Tao
R,
Xiao
F.
Combine Conflicting Evidence Based on the Belief Entropy and IOWA Operator.
IEEE Access,
2019, 7: 120724
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Combine Conflicting Evidence Based on the Belief Entropy and IOWA Operator&author=Tao R&author=Xiao F&publication_year=2019&journal=IEEE Access&volume=7&pages=120724
[94]
Moral-Garcia
S,
Abellan
J.
Maximum of Entropy for Belief Intervals Under Evidence Theory.
IEEE Access,
2020, 8: 118017
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Maximum of Entropy for Belief Intervals Under Evidence Theory&author=Moral-Garcia S&author=Abellan J&publication_year=2020&journal=IEEE Access&volume=8&pages=118017
[95]
Dong
Y,
Zhang
J,
Li
Z.
Combination of Evidential Sensor Reports with Distance Function and Belief Entropy in Fault Diagnosis.
INT J COMPUT COMMUN,
2019, 14: 329-343
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Combination of Evidential Sensor Reports with Distance Function and Belief Entropy in Fault Diagnosis&author=Dong Y&author=Zhang J&author=Li Z&publication_year=2019&journal=INT J COMPUT COMMUN&volume=14&pages=329-343
[96]
Xiao
F.
A Novel Evidence Theory and Fuzzy Preference Approach-Based Multi-Sensor Data Fusion Technique for Fault Diagnosis.
Sensors,
2017, 17: 2504
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Novel Evidence Theory and Fuzzy Preference Approach-Based Multi-Sensor Data Fusion Technique for Fault Diagnosis&author=Xiao F&publication_year=2017&journal=Sensors&volume=17&pages=2504
[97]
Wang
Z,
Xiao
F.
An Improved Multisensor Data Fusion Method and Its Application in Fault Diagnosis.
IEEE Access,
2019, 7: 3928-3937
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=An Improved Multisensor Data Fusion Method and Its Application in Fault Diagnosis&author=Wang Z&author=Xiao F&publication_year=2019&journal=IEEE Access&volume=7&pages=3928-3937
[98]
Chen
L,
Diao
L,
Sang
J.
A novel weighted evidence combination rule based on improved entropy function with a diagnosis application.
Int J Distributed Sens Networks,
2019, 15: 155014771882399
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A novel weighted evidence combination rule based on improved entropy function with a diagnosis application&author=Chen L&author=Diao L&author=Sang J&publication_year=2019&journal=Int J Distributed Sens Networks&volume=15&pages=155014771882399
[99]
Liu F and Wang Y. A novel method of ds evidence theory for multi-sensor conflicting information. In: Proceedings of the 4th International Conference on Machinery, Materials and Computer (MACMC 2017). Paris: Atlantis Press, 2018. 343--349.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Liu F and Wang Y. A novel method of ds evidence theory for multi-sensor conflicting information. In: Proceedings of the 4th International Conference on Machinery, Materials and Computer (MACMC 2017). Paris: Atlantis Press, 2018. 343--349&
[100]
Cui
H,
Liu
Q,
Zhang
J.
An Improved Deng Entropy and Its Application in Pattern Recognition.
IEEE Access,
2019, 7: 18284-18292
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=An Improved Deng Entropy and Its Application in Pattern Recognition&author=Cui H&author=Liu Q&author=Zhang J&publication_year=2019&journal=IEEE Access&volume=7&pages=18284-18292
[101]
Xia
J,
Feng
Y,
Liu
L.
An Evidential Reliability Indicator-Based Fusion Rule for Dempster-Shafer Theory and its Applications in Classification.
IEEE Access,
2018, 6: 24912-24924
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=An Evidential Reliability Indicator-Based Fusion Rule for Dempster-Shafer Theory and its Applications in Classification&author=Xia J&author=Feng Y&author=Liu L&publication_year=2018&journal=IEEE Access&volume=6&pages=24912-24924
[102]
Zhang
Y,
Liu
Y,
Zhang
Z.
Collaborative Fusion for Distributed Target Classification Using Evidence Theory in IOT Environment.
IEEE Access,
2018, 6: 62314-62323
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Collaborative Fusion for Distributed Target Classification Using Evidence Theory in IOT Environment&author=Zhang Y&author=Liu Y&author=Zhang Z&publication_year=2018&journal=IEEE Access&volume=6&pages=62314-62323
[103]
Buono F and Longobardi M. A dual measure of uncertainty: The deng extropy. Entropy, 2020, 22(5).
Google Scholar
http://scholar.google.com/scholar_lookup?title=Buono F and Longobardi M. A dual measure of uncertainty: The deng extropy. Entropy, 2020, 22(5)&
[104]
Pan
L,
Deng
Y.
An association coefficient of a belief function and its application in a target recognition system.
Int J Intell Syst,
2020, 35: 85-104
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=An association coefficient of a belief function and its application in a target recognition system&author=Pan L&author=Deng Y&publication_year=2020&journal=Int J Intell Syst&volume=35&pages=85-104
[105]
Huang Z, Jiang W, and Tang Y. A new method to evaluate risk in failure mode and effects analysis under fuzzy information. 2018, 22(14):4779--4787.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Huang Z, Jiang W, and Tang Y. A new method to evaluate risk in failure mode and effects analysis under fuzzy information. 2018, 22(14):4779--4787&
[106]
Wang
H,
Deng
X,
Zhang
Z.
A New Failure Mode and Effects Analysis Method Based on Dempster-Shafer Theory by Integrating Evidential Network.
IEEE Access,
2019, 7: 79579-79591
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A New Failure Mode and Effects Analysis Method Based on Dempster-Shafer Theory by Integrating Evidential Network&author=Wang H&author=Deng X&author=Zhang Z&publication_year=2019&journal=IEEE Access&volume=7&pages=79579-79591
[107]
Liu
Z,
Xiao
F.
An Intuitionistic Evidential Method for Weight Determination in FMEA Based on Belief Entropy.
Entropy,
2019, 21: 211
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=An Intuitionistic Evidential Method for Weight Determination in FMEA Based on Belief Entropy&author=Liu Z&author=Xiao F&publication_year=2019&journal=Entropy&volume=21&pages=211
[108]
Zheng
H,
Tang
Y.
Deng Entropy Weighted Risk Priority Number Model for Failure Mode and Effects Analysis.
Entropy,
2020, 22: 280
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deng Entropy Weighted Risk Priority Number Model for Failure Mode and Effects Analysis&author=Zheng H&author=Tang Y&publication_year=2020&journal=Entropy&volume=22&pages=280
[109]
Pan
Q,
Zhou
D,
Tang
Y.
A Novel Antagonistic Weapon-Target Assignment Model Considering Uncertainty and its Solution Using Decomposition Co-Evolution Algorithm.
IEEE Access,
2019, 7: 37498-37517
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Novel Antagonistic Weapon-Target Assignment Model Considering Uncertainty and its Solution Using Decomposition Co-Evolution Algorithm&author=Pan Q&author=Zhou D&author=Tang Y&publication_year=2019&journal=IEEE Access&volume=7&pages=37498-37517
[110]
Li
Y,
Wang
A,
Yi
X.
Fire Control System Operation Status Assessment Based on Information Fusion: Case Study.
Sensors,
2019, 19: 2222
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fire Control System Operation Status Assessment Based on Information Fusion: Case Study&author=Li Y&author=Wang A&author=Yi X&publication_year=2019&journal=Sensors&volume=19&pages=2222
[111]
Liu H, Ma Z, Deng X, et al. A new method to air target threat evaluation based on dempster-shafer evidence theory. In: Proceedings of 2018 Chinese Control And Decision Conference (CCDC), 2018. 2504--2508.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Liu H, Ma Z, Deng X, et al. A new method to air target threat evaluation based on dempster-shafer evidence theory. In: Proceedings of 2018 Chinese Control And Decision Conference (CCDC), 2018. 2504--2508&
[112]
Fei
L,
Deng
Y,
Hu
Y.
DS-VIKOR: A New Multi-criteria Decision-Making Method for Supplier Selection.
Int J Fuzzy Syst,
2019, 21: 157-175
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=DS-VIKOR: A New Multi-criteria Decision-Making Method for Supplier Selection&author=Fei L&author=Deng Y&author=Hu Y&publication_year=2019&journal=Int J Fuzzy Syst&volume=21&pages=157-175
[113]
Xiao
F.
A Multiple-Criteria Decision-Making Method Based on D Numbers and Belief Entropy.
Int J Fuzzy Syst,
2019, 21: 1144-1153
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Multiple-Criteria Decision-Making Method Based on D Numbers and Belief Entropy&author=Xiao F&publication_year=2019&journal=Int J Fuzzy Syst&volume=21&pages=1144-1153
[114]
Li
M,
Xu
H,
Deng
Y.
Evidential Decision Tree Based on Belief Entropy.
Entropy,
2019, 21: 897
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Evidential Decision Tree Based on Belief Entropy&author=Li M&author=Xu H&author=Deng Y&publication_year=2019&journal=Entropy&volume=21&pages=897
[115]
Yan
H,
Deng
Y.
An Improved Belief Entropy in Evidence Theory.
IEEE Access,
2020, 8: 57505-57516
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=An Improved Belief Entropy in Evidence Theory&author=Yan H&author=Deng Y&publication_year=2020&journal=IEEE Access&volume=8&pages=57505-57516
[116]
Chen
L,
Li
Z,
Deng
X.
Emergency alternative evaluation under group decision makers: a new method based on entropy weight and DEMATEL.
Int J Syst Sci,
2020, 51: 570-583
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Emergency alternative evaluation under group decision makers: a new method based on entropy weight and DEMATEL&author=Chen L&author=Li Z&author=Deng X&publication_year=2020&journal=Int J Syst Sci&volume=51&pages=570-583
[117]
Shang X, Song M, Huang K, et al. An improved evidential DEMATEL identify critical success factors under uncertain environment. Journal of Ambient Intelligence and Humanized Computing, 2019, pages 1--11.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shang X, Song M, Huang K, et al. An improved evidential DEMATEL identify critical success factors under uncertain environment. Journal of Ambient Intelligence and Humanized Computing, 2019, pages 1--11&
[118]
Huang
Z,
Yang
L,
Jiang
W.
Uncertainty measurement with belief entropy on the interference effect in the quantum-like Bayesian Networks.
Appl Math Computation,
2019, 347: 417-428
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Uncertainty measurement with belief entropy on the interference effect in the quantum-like Bayesian Networks&author=Huang Z&author=Yang L&author=Jiang W&publication_year=2019&journal=Appl Math Computation&volume=347&pages=417-428
[119]
He
Z,
Jiang
W.
An evidential Markov decision making model.
Inf Sci,
2018, 467: 357-372
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=An evidential Markov decision making model&author=He Z&author=Jiang W&publication_year=2018&journal=Inf Sci&volume=467&pages=357-372
[120]
Kang B. Construction of stable hierarchy organization from the perspective of the maximum deng entropy. In: Integrated Uncertainty in Knowledge Modelling and Decision Making. Berlin: Springer, 2019. 421--431.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kang B. Construction of stable hierarchy organization from the perspective of the maximum deng entropy. In: Integrated Uncertainty in Knowledge Modelling and Decision Making. Berlin: Springer, 2019. 421--431&
[121]
Mambe M D, Oumtanaga S, Anoh G N. A belief entropy-based approach for conflict resolution in iot applications. In: Proceedings of 2018 1st International Conference on Smart Cities and Communities (SCCIC), 2018. 1--5.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mambe M D, Oumtanaga S, Anoh G N. A belief entropy-based approach for conflict resolution in iot applications. In: Proceedings of 2018 1st International Conference on Smart Cities and Communities (SCCIC), 2018. 1--5&
[122]
Prajapati G L, Saha R. Reeds: Relevance and enhanced entropy based dempster shafer approach for next word prediction using language model. Journal of Computational Science, 2019, 35:1--11.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Prajapati G L, Saha R. Reeds: Relevance and enhanced entropy based dempster shafer approach for next word prediction using language model. Journal of Computational Science, 2019, 35:1--11&