logo

SCIENCE CHINA Information Sciences, Volume 64 , Issue 9 : 192304(2021) https://doi.org/10.1007/s11432-020-2991-1

Optical true time delay pool based hybrid beamformer enabling centralized beamforming control in millimeter-wave C-RAN systems

More info
  • ReceivedMar 19, 2020
  • AcceptedJul 20, 2020
  • PublishedAug 18, 2021

Abstract


Acknowledgment

This work was supported by National Key RD Program of China (Grant No. 2018YFB1801302) and Project for Zhongshan Social Public Welfare Science (Grant No. 2019B2007).


References

[1] Li X, Yu J, Chang G K. Photonics-Assisted Technologies for Extreme Broadband 5G Wireless Communications. J Lightwave Technol, 2019, 37: 2851-2865 CrossRef ADS Google Scholar

[2] Xie T, Dai L, Ng D W K. On the Power Leakage Problem in Millimeter-Wave Massive MIMO With Lens Antenna Arrays. IEEE Trans Signal Process, 2019, 67: 4730-4744 CrossRef ADS Google Scholar

[3] Kutty S, Sen D. Beamforming for Millimeter Wave Communications: An Inclusive Survey. IEEE Commun Surv Tutorials, 2016, 18: 949-973 CrossRef Google Scholar

[4] Jaber M, Imran M A, Tafazolli R. 5G Backhaul Challenges and Emerging Research Directions: A Survey. IEEE Access, 2016, 4: 1743-1766 CrossRef Google Scholar

[5] Kalfas G, Vagionas C, Antonopoulos A. Next Generation Fiber-Wireless Fronthaul for 5G mmWave Networks. IEEE Commun Mag, 2019, 57: 138-144 CrossRef Google Scholar

[6] Li H, Yang Q, Fu S. Digital Code-Division Multiplexing Channel Aggregation for Mobile Fronthaul Architecture With Low Complexity. IEEE Photonics J, 2018, 10: 1-10 CrossRef ADS Google Scholar

[7] Gong S, Xing C, Fei Z. Cooperative beamforming design for physical-layer security of multi-hop MIMO communications. Sci China Inf Sci, 2016, 59: 062304 CrossRef Google Scholar

[8] Liu D, Wu F, Quan X. Energy- and spectral-efficiency of zero-forcing beamforming in massive MIMO systems with imperfect reciprocity calibration: bound and optimization. Sci China Inf Sci, 2018, 61: 122302 CrossRef Google Scholar

[9] Alimi I A, Teixeira A L, Monteiro P P. Toward an Efficient C-RAN Optical Fronthaul for the Future Networks: A Tutorial on Technologies, Requirements, Challenges, and Solutions. IEEE Commun Surv Tutorials, 2018, 20: 708-769 CrossRef Google Scholar

[10] Ayach O E, Rajagopal S, Abu-Surra S. Spatially Sparse Precoding in Millimeter Wave MIMO Systems. IEEE Trans Wireless Commun, 2014, 13: 1499-1513 CrossRef Google Scholar

[11] Sohrabi F, Yu W. Hybrid Digital and Analog Beamforming Design for Large-Scale Antenna Arrays. IEEE J Sel Top Signal Process, 2016, 10: 501-513 CrossRef ADS arXiv Google Scholar

[12] He S, Wang J, Huang Y. Codebook-Based Hybrid Precoding for Millimeter Wave Multiuser Systems. IEEE Trans Signal Process, 2017, 65: 5289-5304 CrossRef ADS arXiv Google Scholar

[13] Alkhateeb A, Leus G, Heath R W. Limited Feedback Hybrid Precoding for Multi-User Millimeter Wave Systems. IEEE Trans Wireless Commun, 2015, 14: 6481-6494 CrossRef Google Scholar

[14] Alkhateeb A, Heath R W. Frequency Selective Hybrid Precoding for Limited Feedback Millimeter Wave Systems. IEEE Trans Commun, 2016, 64: 1801-1818 CrossRef Google Scholar

[15] Alkhateeb A, El Ayach O, Leus G. Channel Estimation and Hybrid Precoding for Millimeter Wave Cellular Systems. IEEE J Sel Top Signal Process, 2014, 8: 831-846 CrossRef ADS arXiv Google Scholar

[16] Junyi Wang , Zhou Lan , Chang-woo Pyo . Beam codebook based beamforming protocol for multi-Gbps millimeter-wave WPAN systems. IEEE J Sel Areas Commun, 2009, 27: 1390-1399 CrossRef Google Scholar

[17] Adhikary A, Junyoung Nam A, Jae-Young Ahn A. Joint Spatial Division and Multiplexing-The Large-Scale Array Regime. IEEE Trans Inform Theor, 2013, 59: 6441-6463 CrossRef Google Scholar

[18] Riza N A. Optical multiple beamforming systems for wireless communication antennas. In: Proceedings of SPIE, San Diego, 1995. 139--150. Google Scholar

[19] Cao Z, Ma Q, Smolders A B. Advanced Integration Techniques on Broadband Millimeter-Wave Beam Steering for 5G Wireless Networks and Beyond. IEEE J Quantum Electron, 2016, 52: 1-20 CrossRef ADS Google Scholar

[20] Bantavis P I, Kolitsidas C I, Empliouk T. A Cost-Effective Wideband Switched Beam Antenna System for a Small Cell Base Station. IEEE Trans Antennas Propagat, 2018, 66: 6851-6861 CrossRef ADS Google Scholar

[21] Huang H, Zhang C, Chen C. Optical True Time Delay Pools Based Centralized Beamforming Control for Wireless Base Stations Phased-Array Antennas. J Lightwave Technol, 2018, 36: 3693-3699 CrossRef ADS Google Scholar

[22] Wang R F, Zhang C F, Huang H, et al. An algorithm approach to optical true time delay pool enabled centralized control beamforming for wireless base station. In: Proceedings of the 17th International Conference on Optical Communications and Networks (ICOCN 2018), Zhuhai, 2018. Google Scholar

[23] Riza N A. An acoustooptic-phased-array antenna beamformer for multiple simultaneous beam generation. IEEE Photon Technol Lett, 1992, 4: 807-809 CrossRef ADS Google Scholar

[24] Zhang L, Li M, Shi N. Photonic true time delay beamforming technique with ultra-fast beam scanning. Opt Express, 2017, 25: 14524-14532 CrossRef ADS Google Scholar

[25] Huang H, Zhang C F, Yang M C, et al. Optical codebook based hybrid precoding for millimeter wave MIMO systems with fronthaul. In: Proceedings of Asia Communications and Photonics Conference (ACP 2019), Chengdu, 2019. Google Scholar

[26] Ryu H Y, Lee D, Park K D. Discretely tunable erbium-doped fiber ring laser selecting ITU-T grids of 273 channels ? 50-GHz spacing in C- and L-band regions. Appl Phys B, 2004, 79: 583-586 CrossRef ADS Google Scholar

[27] Ye X, Zhang F, Pan S. Optical true time delay unit for multi-beamforming. Opt Express, 2015, 23: 10002-10008 CrossRef ADS Google Scholar

[28] Chen S, Gao Q, Chen R. A CSI acquisition approach for mmWave massive MIMO. China Commun, 2019, 16: 1-14 CrossRef Google Scholar

[29] Huang C, Liu L, Yuen C. Iterative Channel Estimation Using LSE and Sparse Message Passing for MmWave MIMO Systems. IEEE Trans Signal Process, 2019, 67: 245-259 CrossRef ADS Google Scholar

[30] Hung W-L, Chen C-H, Liao C-C, et al. Low-complexity hybrid precoding algorithm based on orthogonal beamforming codebook. In: Proceedings of 2015 IEEE Workshop on Signal Processing Systems (SiPS), Hangzhou, 2019. Google Scholar

[31] Liang L, Xu W, Dong X. Low-Complexity Hybrid Precoding in Massive Multiuser MIMO Systems. IEEE Wireless Commun Lett, 2014, 3: 653-656 CrossRef Google Scholar

[32] Taesa , Goldsmith A. On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming. IEEE J Sel Areas Commun, 2006, 24: 528-541 CrossRef Google Scholar

  • Figure 1

    (Color online) (a) Structure of the proposed OTTDP-HBF for mmWave 5G C-RAN systems with eCPRI-based fronthaul; (b) PHY-layer with brief processing stages in downlink direction, and a promising eCPRI split II$_D$. OTTDP-HBF: optical true time delay based hybrid beamforming.

  • Figure 2

    (Color online) Framework of the proposed OTTDP-HBF enabling centralized beamforming control in a mmWave 5G C-RAN system with eCPRI-based fronthaul.

  • Figure 3

    (Color online) Implementation of the proposed OTTDP-HBF in a mmWave 5G C-RAN system with eCPRI-based fronthaul. TOF: tunable optical filter; E/O: electro-optic conversion; MLS: multi-wavelength laser source; Muxer: multiplexer; Demuxer: demultiplexer; PD: photodetector.

  • Figure 4

    An example of $9\times10$ optical wavelength matrix ${\boldsymbol~W}_{\rm~OW}$ designed based on (1), and its corresponding weight matrix ${\boldsymbol~F}_w^{\rm~OW}$. CW: codeword.

  • Figure 5

    (Color online) Spectral efficiency versus SNR ($\rho/\sigma^2$) for the single user channel via fully-digital precoding (red color), OMP-based hybrid precoding (blue color), and OTTDP-based hybrid precoding (green color).

  • Figure 6

    (Color online) Averaged achievable rates achieved by optimal multi-user precoder without interference (red color), two-stage multi-user hybrid precoder (green color), and OTTDP-based multi-user precoder (blue color).

  •   

    Algorithm 1 OTTDP-based sparse precoding via orthogonal matching pursuit

    Require:${\boldsymbol~F}_{\rm~opt}$, ${\boldsymbol~W}_{\rm~OW}$, and ${\boldsymbol~F}^{\rm~OW}_w$.

    Output: ${\boldsymbol~F}^{\rm~OW}_{\rm~RF}$ and ${\boldsymbol~F}^{N}_{\rm~BB}$.

    Initialize ${\boldsymbol~F}^{N}_{\rm~RF}$ and ${\boldsymbol~F}^{N}_{\rm~BB}$;

    ${\boldsymbol~R}_{\rm~res}={\boldsymbol~F}_{\rm~opt}$;

    for $i=1~\to~N^{\rm~RF}_{t}$

    $k=\mathrm{arg}\max\nolimits_{p~\in~[1,\ldots,~K],~{w}_p~\subset~{\boldsymbol~F}^{\rm~OW}_w}|\langle{\boldsymbol~w}_p,{\boldsymbol~R}_{\rm~res}~\rangle~|$;

    ${\boldsymbol~F}^{N}_{\rm~RF}={\boldsymbol~F}^{N}_{\rm~RF}~\cup~{\boldsymbol~w}_k$;

    ${\boldsymbol~F}^{N}_{\rm~BB}=[({\boldsymbol~F}^{N}_{\rm~RF})^\mathrm{H}{\boldsymbol~F}^{N}_{\rm~RF}]^{-1}({\boldsymbol~F}^{N}_{\rm~RF})^\mathrm{H}{\boldsymbol~F}_{\rm~opt}$;

    ${\boldsymbol~R}_{\rm~res}=\frac{{\boldsymbol~F}_{\rm~opt}-{\boldsymbol~F}^{N}_{\rm~RF}{\boldsymbol~F}^{~N}_{\rm~BB}} {\|{\boldsymbol~F}_{\rm~opt}-{\boldsymbol~F}^{N}_{\rm~RF}{\boldsymbol~F}^{N}_{\rm~BB}\|_\mathrm{F}}$;

    end for

    Select ${\boldsymbol~F}^{\rm~OW}_{\rm~RF}$ from ${\boldsymbol~W}_{\rm~OW}$ according to ${\boldsymbol~F}^{N}_{\rm~RF}$.

  •   

    Algorithm 2 OTTDP-based hybrid precoding for multi-user scenarios

    Require:${\boldsymbol~V}_{\rm~opt}$, ${\boldsymbol~F}^{\rm~OW}_{w}$, and ${\boldsymbol~W}_{\rm~OW}$.

    Output:${\boldsymbol~V}^{\rm~OW}_{\rm~RF}$, ${\boldsymbol~V}_{\rm~RF}$, and ${\boldsymbol~V}_{\rm~BB}$.

    Calculate fully-digital zero-forcing precoder ${\boldsymbol~V}_{\rm~opt}$ by (7);

    Calculate weight vector ${\boldsymbol~h}$ by (9);

    Generate analog precoder ${\boldsymbol~V}_{\rm~RF}$ by (10);

    Select columns from ${\boldsymbol~W}_{\rm~OW}$ to form ${\boldsymbol~V}^{\rm~OW}_{\rm~RF}$;

    Calculate digital precoder ${\boldsymbol~V}_{\rm~BB}$ by (11).

qqqq

Contact and support