logo

SCIENCE CHINA Information Sciences, Volume 64 , Issue 4 : 142401(2021) https://doi.org/10.1007/s11432-020-2974-9

Resolution limit of mode-localised sensors

More info
  • ReceivedFeb 22, 2020
  • AcceptedJul 2, 2020
  • PublishedNov 25, 2020

Abstract


Acknowledgment

This work was supported by National Key Research and Development Program of China (Grant No. 2018YFB2002600), National Natural Science Foundation of China (Grant No. 51575454), and Fundamental Research Funds for the Central Universities (Grant No. 3102019JC002). The author would like to show grateful acknowledgment to H. Kang and J. Yang for their helpful discussion.


References

[1] Patsavellas J, Salonitis K. The Carbon Footprint of Manufacturing Digitalization: critical literature review and future research agenda. Procedia CIRP, 2019, 81: 1354-1359 CrossRef Google Scholar

[2] Trusov A, Atikyan G, Rozelle D M, et al. Flat is not dead: Current and future performance of Si-MEMS Quad Mass Gyro (QMG) system. In: Proceedings of 2014 IEEE/ION Position, Location and Navigation Symposium, Monterey, 2014. 252--258. Google Scholar

[3] Ramezani M, Ghatge M, Tabrizian R. High-Q silicon fin bulk acoustic resonators for signal processing beyond the UHF. In: Proceedings of 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, 2017. 1--4. Google Scholar

[4] Abdolvand R, Amini B V, Ayazi F. Sub-Micro-Gravity In-Plane Accelerometers With Reduced Capacitive Gaps and Extra Seismic Mass. J Microelectromech Syst, 2007, 16: 1036-1043 CrossRef Google Scholar

[5] Spletzer M, Raman A, Wu A Q. Ultrasensitive mass sensing using mode localization in coupled microcantilevers. Appl Phys Lett, 2006, 88: 254102 CrossRef ADS Google Scholar

[6] Novoselov K S, Mishchenko A, Carvalho A. 2D materials and van der Waals heterostructures. Science, 2016, 353: aac9439 CrossRef Google Scholar

[7] de Lépinay L M, Pigeau B, Besga B. A universal and ultrasensitive vectorial nanomechanical sensor for imaging 2D force fields. Nat Nanotech, 2017, 12: 156-162 CrossRef ADS arXiv Google Scholar

[8] Yang J, Zhong J, Chang H. A Closed-Loop Mode-Localized Accelerometer. J Microelectromech Syst, 2018, 27: 210-217 CrossRef Google Scholar

[9] Kang H, Yang J, Chang H. A Closed-Loop Accelerometer Based on Three Degree-of-Freedom Weakly Coupled Resonator With Self-Elimination of Feedthrough Signal. IEEE Sens J, 2018, 18: 3960-3967 CrossRef ADS Google Scholar

[10] Zhao C, Wood G S, Xie J. A force sensor based on three weakly coupled resonators with ultrahigh sensitivity. Sens Actuat A-Phys, 2015, 232: 151-162 CrossRef Google Scholar

[11] Yang J, Kang H, Chang H L. A micro resonant electrometer with 9-electron charge resolution in room temperature. In: Proceedings of 2018 IEEE Micro Electro Mechanical Systems (MEMS), 2018. 67--70. Google Scholar

[12] Anderson P W. Absence of Diffusion in Certain Random Lattices. Phys Rev, 1958, 109: 1492-1505 CrossRef ADS Google Scholar

[13] Hodges C H, Woodhouse J. Confinement of vibration by one-dimensional disorder. I: theory of ensemble averaging. J SoundVib, 1989, 130: 237--251. Google Scholar

[14] Zhao C, Wood G S, Xie J. A Comparative Study of Output Metrics for an MEMS Resonant Sensor Consisting of Three Weakly Coupled Resonators. J Microelectromech Syst, 2016, 25: 626-636 CrossRef Google Scholar

[15] Kraft M. Coupled resonators as a new transduction principle for ultraprecise sensors. In: Proceedings of the 19th ITG/GMA-Symposium on Sensors and Measuring Systems, Nuremberg, 2018. 1--4. Google Scholar

[16] álvarez M, Tamayo J, Plaza J A. Dimension dependence of the thermomechanical noise of microcantilevers. J Appl Phys, 2006, 99: 024910 CrossRef ADS Google Scholar

[17] Gabrielson T B. Mechanical-thermal noise in micromachined acoustic and vibration sensors. IEEE Trans Electron Devices, 1993, 40: 903-909 CrossRef ADS Google Scholar

[18] Sears F W, Salinger G L. Thermodynamics, Kinetic Theory, and Statistical Thermodynamics. Reading: Addison-Wesley Publishing Company Press, 1975. Google Scholar

[19] Kittel C. Elementary Statistical Physics. New York: Dover Publications Pressed, 2004. Google Scholar

[20] Hodges C H. Confinement of vibration by structural irregularity. J Sound Vib, 1982, 82: 411-424 CrossRef Google Scholar

[21] Thiruvenkatanathan P, Woodhouse J, Yan J. Limits to mode-localized sensing using micro- and nanomechanical resonator arrays. J Appl Phys, 2011, 109: 104903 CrossRef Google Scholar

[22] Zhang H, Li B, Yuan W. An Acceleration Sensing Method Based on the Mode Localization of Weakly Coupled Resonators. J Microelectromech Syst, 2016, 25: 286-296 CrossRef Google Scholar

[23] Zhang H, Huang J, Yuan W. A High-Sensitivity Micromechanical Electrometer Based on Mode Localization of Two Degree-of-Freedom Weakly Coupled Resonators. J Microelectromech Syst, 2016, 25: 937-946 CrossRef Google Scholar

[24] Saulson P R. Thermal noise in mechanical experiments. Phys Rev D, 1990, 42: 2437-2445 CrossRef ADS Google Scholar

[25] Juillard J, Prache P, Maris Ferreira P. Ultimate Limits of Differential Resonant MEMS Sensors Based on Two Coupled Linear Resonators. IEEE Trans Ultrason Ferroelect Freq Contr, 2018, 65: 2440-2448 CrossRef Google Scholar

[26] Zhao C, Wood G S, Xie J. A Three Degree-of-Freedom Weakly Coupled Resonator Sensor With Enhanced Stiffness Sensitivity. J Microelectromech Syst, 2016, 25: 38-51 CrossRef Google Scholar

[27] Kang H, Yang J, Zhong J M, et al. A mode-localised accelerometer based on three degree-of-freedom weakly coupled resonator. In: Proceedings of 2017 IEEE SENSORS, Glasgow, 2017. 1--3. Google Scholar

[28] Kang H, Ruan B, Hao Y. A Micromachined Electrometer With Room Temperature Resolution of 0.256 e/$\surd$ Hz. IEEE Sens J, 2020, 20: 95-101 CrossRef ADS Google Scholar

[29] Juillard J, Prache P, Ferreira P M, et al. Impact of output metric on the resolution of mode-localisedlocalised MEMS resonant sensors. In: Proceedings of 2017 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS), 2017. Google Scholar

  • Figure 1

    (Color online) Schematic diagram of thermomechanical noise mechanism of a resonator.

  • Figure 2

    (Color online) Schematic diagram of 2-DoF WCRs.

  • Figure 3

    (Color online) Schematic diagram of multi-DoF WCRs.

  • Table 1  

    Table 1Comparison of resolution limit model of 2-DoF WCRs

    Resolution limit model
    This model $R_{AR}\approx2\sqrt{2}\kappa\frac{N}{F}\Delta~f^{1/2}=2\sqrt{2}\kappa\frac{\sqrt{4k_BTc\Delta~f}}{F}$
    A. Seshia [21] $R_{AR}\approx8\kappa\sqrt{\frac{E_{\rm~th}\Delta~f}{2E_cQ\omega_{\rm~eff}}}=8\kappa\sqrt{\frac{k_BTC_c^{\rm~eff}\Delta~f}{(m_r^{\rm~eff})^2(\omega_{\rm~eff})^4(X_r^0)^2}}$
    Jérôme Juillard [24] $R_{AR}=\frac{2N}{QF}\Delta~f^{1/2}$
  • Table 2  

    Table 2Comparison of resolution limit model using frequency and AR output metrics

    Resolution limit model
    Frequency output metric$~\frac{1}{Q}~\frac{N}{F}~\Delta~f^{1/2}$
    2-DoF $~2\sqrt{2}\kappa\frac{N}{F}\Delta~f^{1/2}$
    AR output metric 3-DoF $~\frac{2\sqrt{2}\kappa^2}{a-1}\frac{N}{F}\Delta~f^{1/2}$
    4-DoF $~\frac{2\sqrt{2}\kappa^3}{(a-1)^2}\frac{N}{F}\Delta~f^{1/2}$
qqqq

Contact and support