SCIENCE CHINA Information Sciences, Volume 63 , Issue 8 : 180502(2020) https://doi.org/10.1007/s11432-020-2932-8

Superconducting X-ray detectors

More info
  • ReceivedFeb 12, 2020
  • AcceptedMay 20, 2020
  • PublishedJul 15, 2020



This work was supported by National Key RD Program of China (Grant No. 2017YFA0304000), National Natural Science Foundation of China (Grant Nos. 61671438, U1631240), Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01), and Program of Shanghai Academic/Technology Research Leader (Grant No. 18XD1404600).


[1] Hasegawa B H. The Physics of Medical X-ray Imaging, Or, The Photon and Me--how I Saw the Light. Medical Physics Publ, 1991. Google Scholar

[2] Jenkins R, Snyder R L. Introduction to X-ray Powder Diffractometry. New York: Wiley, 1996. Google Scholar

[3] Q. Wang, Z. Chen, X. Wu et al. Review of X-ray security inspection technology. Computerized tomography theory and applications, 2004, 1: 008. Google Scholar

[4] Fraser G. X-ray Detectors in Astronomy. Cambridge and New York: Cambridge University Press, 1989. 312. Google Scholar

[5] Cnudde V, Boone M N. High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Earth-Science Reviews, 2013, 123: 1--17. Google Scholar

[6] Jenkins R. X-ray Fluorescence Spectrometry. New York: Wiley, 1999. Google Scholar

[7] Gatti E, Rehak P. Semiconductor drift chamber - An application of a novel charge transport scheme. Nucl Instruments Methods Phys Res, 1984, 225: 608-614 CrossRef Google Scholar

[8] Lechner P, Fiorini C, Hartmann R. Silicon drift detectors for high count rate X-ray spectroscopy at room temperature. Nucl Instruments Methods Phys Res Sect A-Accelerators Spectrometers Detectors Associated Equipment, 2001, 458: 281-287 CrossRef Google Scholar

[9] Lechner P, Eckbauer S, Hartmann R. Silicon drift detectors for high resolution room temperature X-ray spectroscopy. Nucl Instruments Methods Phys Res Sect A-Accelerators Spectrometers Detectors Associated Equipment, 1996, 377: 346-351 CrossRef Google Scholar

[10] Yakunin S, Sytnyk M, Kriegner D. Detection of X-ray photons by solution-processed lead halide perovskites. Nat Photon, 2015, 9: 444-449 CrossRef ADS Google Scholar

[11] Tinkham M. Introduction to superconductivity. Courier Corporation, 2004. Google Scholar

[12] Schrieffer J R. Theory of Superconductivity. Boca Raton: CRC Press, 2018. Google Scholar

[13] Matthias B T, Geballe T H, Compton V B. Superconductivity. Reviews of Modern Physics, 1963, 35: 1. Google Scholar

[14] S. M. Anlage. The physics and applications of superconducting metamaterials. Journal of Optics, 2010, 13: 024001. Google Scholar

[15] Tomita M, Murakami M. High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29K. Nature, 2003, 421: 517-520 CrossRef ADS Google Scholar

[16] W. Braunisch, N. Knauf, V. Kataev et al. Paramagnetic Meissner effect in Bi high-temperature superconductors. Physical review letters, 1992, 68: 1908. Google Scholar

[17] Orlando T P, Delin K A. Foundations of Applied Superconductivity. Reading: Addison-Wesley, 1991. Google Scholar

[18] Semenov A, Engel A, Il'in K. Ultimate performance of a superconducting quantum detector. Eur Phys J AP, 2003, 21: 171-178 CrossRef Google Scholar

[19] Bardeen J, Cooper L N, Schrieffer J R. Theory of Superconductivity. Phys Rev, 1957, 108: 1175-1204 CrossRef ADS Google Scholar

[20] Irwin K D, Hilton G C. Transition-edge sensors. In: Cryogenic Particle Detection. Berlin: Springer, 2005. 63--150. Google Scholar

[21] Aschermann G, Friederich E, Justi E, et al. Supraleitfähige Verbindungen mit extrem hohen Sprungtemperaturen (NbH und NbN). In: Technischwissenschaftliche Abhandlungen der Osram-Gesellschaft. Berlin: Springer, 1943. 401--416. Google Scholar

[22] D. Andrews, W. Brucksch Jr, W. Ziegler et al. Superconducting films as radiometric receivers. Physical Review, 1941, 59: 1045. Google Scholar

[23] A. Pippard. Field variation of the superconducting penetration depth. Proceedings of the Royal Society of London. Series A Mathematical and Physical Sciences, 1950, 203: 210--223. Google Scholar

[24] Suhl H, Matthias B T, Walker L R. Bardeen-Cooper-Schrieffer Theory of Superconductivity in the Case of Overlapping Bands. Phys Rev Lett, 1959, 3: 552-554 CrossRef ADS Google Scholar

[25] L. P. Gor'kov. Microscopic derivation of the Ginzburg-Landau equations in the theory of superconductivity. Sov Phys JETP, 1959, 9: 1364--1367. Google Scholar

[26] Ginzburg V, Landau L. Zh. eksper. teor. Fiz. Oxford: Pergamon Press, 1950, 20: 1064--1082. Google Scholar

[27] Day P K, LeDuc H G, Mazin B A. A broadband superconducting detector suitable for use in large arrays. Nature, 2003, 425: 817-821 CrossRef ADS Google Scholar

[28] Zmuidzinas J. Superconducting Microresonators: Physics and Applications. Annu Rev Condens Matter Phys, 2012, 3: 169-214 CrossRef Google Scholar

[29] Samedov V V. Influence of the proximity effect on the energy resolution of STJs. Nucl Instruments Methods Phys Res Sect A-Accelerators Spectrometers Detectors Associated Equipment, 2004, 520: 257-259 CrossRef ADS Google Scholar

[30] Wang Z, Kawakami A, Uzawa Y. NbN/AlN/NbN tunnel junctions with high current density up to 54 kA/cm$^{2}$. Appl Phys Lett, 1997, 70: 114-116 CrossRef ADS Google Scholar

[31] Mazin B A, Bumble B, Meeker S R. A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics. Opt Express, 2012, 20: 1503-1511 CrossRef ADS arXiv Google Scholar

[32] Wollman D A, Irwin K D, Hilton G C. High?resolution, energy?dispersive microcalorimeter spectrometer for X?ray microanalysis. J Microsc, 1997, 188: 196-223 CrossRef Google Scholar

[33] K. D. Irwin, G. C. Hilton, D. A. Wollman et al. X-ray detection using a superconducting transition-edge sensor microcalorimeter with electrothermal feedback. Applied physics letters, 1996, 69: 1945--1947. Google Scholar

[34] M. Kurakado. Review on superconducting tunnel junctions as ionizing-radiation detectors. In: Superconducting Devices and Their Applications. Berlin: Springer, 1992. 466--473. Google Scholar

[35] Mazin B A. Microwave kinetic inductance detectors. Dissertation for Ph.D. Degree. California: California Institute of Technology, 2005. Google Scholar

[36] Gol'tsman G N, Okunev O, Chulkova G. Picosecond superconducting single-photon optical detector. Appl Phys Lett, 2001, 79: 705-707 CrossRef ADS Google Scholar

[37] Irwin K D, Niemack M D, Beyer J. Code-division multiplexing of superconducting transition-edge sensor arrays. Supercond Sci Technol, 2010, 23: 034004 CrossRef ADS Google Scholar

[38] T. Irimatsugawa, S. Hatakeyama, M. Ohno et al. High energy gamma-ray spectroscopy using transition-edge sensor with a superconducting bulk tantalum absorber. IEEE Transactions on Applied Superconductivity, 2014, 25: 1--3. Google Scholar

[39] Ullom J N, Bennett D A. Review of superconducting transition-edge sensors for x-ray and gamma-ray spectroscopy. Supercond Sci Technol, 2015, 28: 084003 CrossRef ADS Google Scholar

[40] Friedrich S, Harris J, Warburton W K. 112-Pixel Arrays of High-Efficiency STJ X-Ray Detectors. J Low Temp Phys, 2014, 176: 553-559 CrossRef ADS Google Scholar

[41] V. Andrianov. Comment on “Observation of nuclear gamma resonance with superconducting tunnel junction detectors”[AIP Advances 6, 025315 (2016)]. AIP Advances, 2019, 9: 059101. Google Scholar

[42] Ulbricht G, Mazin B A, Szypryt P. Highly multiplexible thermal kinetic inductance detectors for x-ray imaging spectroscopy. Appl Phys Lett, 2015, 106: 251103 CrossRef ADS arXiv Google Scholar

[43] Faverzani M, Cruciani A, D'Addabbo A. Thermal kinetic inductance detectors for soft X-ray spectroscopy. Nucl Instruments Methods Phys Res Sect A-Accelerators Spectrometers Detectors Associated Equipment, 2019, 936: 197-198 CrossRef ADS Google Scholar

[44] Zhang X, Wang Q, Schilling A. Superconducting single X-ray photon detector based on W$_{0.8}$Si$_{0.2}$. AIP Adv, 2016, 6: 115104 CrossRef ADS arXiv Google Scholar

[45] Inderbitzin K, Engel A, Schilling A. An ultra-fast superconducting Nb nanowire single-photon detector for soft x-rays. Appl Phys Lett, 2012, 101: 162601 CrossRef ADS arXiv Google Scholar

[46] Mates J A B. The microwave SQUID multiplexer. Dissertation for Ph.D. Degree. 2011. Google Scholar

[47] Chester G V, Thellung A. The Law of Wiedemann and Franz. Proc Phys Soc, 1961, 77: 1005-1013 CrossRef ADS Google Scholar

[48] Lindeman M A, Bandler S, Brekosky R P. Impedance measurements and modeling of a transition-edge-sensor calorimeter. Rev Sci Instruments, 2004, 75: 1283-1289 CrossRef ADS Google Scholar

[49] M. A. Lindeman. Microcalorimetry and the transition-edge sensor. Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States)2000. Google Scholar

[50] K. D. Irwin. Phonon-mediated particle detection using superconducting tungsten transition-edge sensors. Fermi National Accelerator Lab.(FNAL), Batavia, IL (United States)1995. Google Scholar

[51] Irwin K D, Hilton G C, Wollman D A. Thermal-response time of superconducting transition-edge microcalorimeters. J Appl Phys, 1998, 83: 3978-3985 CrossRef ADS Google Scholar

[52] F. Mandl. Statistical Physics. 1988 ed. Trowbridge, United Kingdom: John Wiley & Sons. Google Scholar

[53] Giachero A, Cruciani A, D'Addabbo A. Development of Thermal Kinetic Inductance Detectors Suitable for X-ray Spectroscopy. J Low Temp Phys, 2018, 193: 163-169 CrossRef ADS arXiv Google Scholar

[54] Mazin B A, Bumble B, Day P K. Position sensitive x-ray spectrophotometer using microwave kinetic inductance detectors. Appl Phys Lett, 2006, 89: 222507 CrossRef ADS arXiv Google Scholar

[55] P. Verhoeve, D. Martin,R. Venn. Imaging soft x-ray spectrometers based on superconducting tunnel junctions. in High Energy, Optical, and Infrared Detectors for Astronomy IV, 2010, 7742: 77420O: International Society for Optics and Photonics. Google Scholar

[56] Semenov A D, Gol tsman G N, Sobolewski R. TOPICAL REVIEW: Hot-electron effect in superconductors and its applications for radiation sensors. Supercond Sci Technol, 2002, 15: R1-R16 CrossRef ADS Google Scholar

[57] H. Koch,H. Lübbig. Superconducting Devices and Their Applications: Proceedings of the 4th International Conference SQUID'91 (Sessions on Superconducting Devices), Berlin, Fed. Rep. of Germany, June 18--21, 1991. Springer Science & Business Media, 2012. Google Scholar

[58] J. P. Hays-Wehle, P. J. Lowell, D. R. Schmidt et al. An Overhanging Absorber for TES X-Ray Focal Planes. IEEE Transactions on Applied Superconductivity, 2017, 27: 1--4. Google Scholar

[59] Lee S J, Adams J S, Bandler S R. Fine pitch transition-edge sensor X-ray microcalorimeters with sub-eV energy resolution at 1.5 keV. Appl Phys Lett, 2015, 107: 223503 CrossRef ADS Google Scholar

[60] M. Gaidis. Superconducting Tunnel Junctions as Single Photon X-Ray Detectors. 01/01 1994. Google Scholar

[61] Sellers G J, Anderson A C, Birnbaum H K. Anomalous heat capacities of niobium and tantalum below 1 K. Phys Rev B, 1974, 10: 2771-2776 CrossRef ADS Google Scholar

[62] O'Neal H R, Phillips N E. Low-Temperature Heat Capacities of Indium and Tin. Phys Rev, 1965, 137: A748-A759 CrossRef ADS Google Scholar

[63] S. J. Smith, J. S. Adams, S. R. Bandler et al. Multiabsorber transition-edge sensors for x-ray astronomy. Journal of Astronomical Telescopes, Instruments, and Systems, 2019, 5: 021008. Google Scholar

[64] Maul M K, Strandberg M W P, Kyhl R L. Excess Noise in Superconducting Bolometers. Phys Rev, 1969, 182: 522-525 CrossRef ADS Google Scholar

[65] Neuhauser B, Cabrera B, Martoff C J. Phonon-Mediated Detection of Alpha Particles with Aluminum Transition Edge Sensors. Jpn J Appl Phys, 1987, 26: 1671 CrossRef ADS Google Scholar

[66] J. Clarke,A. I. Braginski, The SQUID handbook. Wiley Online Library, 2004. Google Scholar

[67] Irwin K D, Nam S W, Cabrera B. A self-biasing cryogenic particle detector utilizing electrothermal feedback and a SQUID readout. IEEE Trans Appl Supercond, 1995, 5: 2690-2693 CrossRef ADS Google Scholar

[68] K. Irwin. An application of electrothermal feedback for high resolution cryogenic particle detection. Applied Physics Letters, 1995, 66: 1998--2000. Google Scholar

[69] Chervenak J A, Irwin K D, Grossman E N. Superconducting multiplexer for arrays of transition edge sensors. Appl Phys Lett, 1999, 74: 4043-4045 CrossRef ADS Google Scholar

[70] Chervenak J A, Grossman E N, Irwin K D. Performance of multiplexed SQUID readout for Cryogenic Sensor Arrays. Nucl Instruments Methods Phys Res Sect A-Accelerators Spectrometers Detectors Associated Equipment, 2000, 444: 107-110 CrossRef Google Scholar

[71] D. Benford, C. Allen, J. Chervenak et al. Multiplexed readout of superconducting bolometers. International Journal of Infrared and Millimeter Waves, 2000, 21: 1909--1916. Google Scholar

[72] W. B. Doriese, J. N. Ullom, J. A. Beall et al. 14-pixel, multiplexed array of gamma-ray microcalorimeters with 47 eV energy resolution at 103 keV. Applied physics letters, 2007, 90: 193508. Google Scholar

[73] Woodcraft A L, Ade P A R, Bintley D. Electrical and optical measurements on the first SCUBA-2 prototype 1280 pixel submillimeter superconducting bolometer array. Rev Sci Instruments, 2007, 78: 024502 CrossRef ADS Google Scholar

[74] de Korte P A J, Beyer J, Deiker S. Time-division superconducting quantum interference device multiplexer for transition-edge sensors. Rev Sci Instruments, 2003, 74: 3807-3815 CrossRef ADS Google Scholar

[75] M. Cunningham, J. Ullom, T. Miyazaki et al. High-resolution operation of frequency-multiplexed transition-edge photon sensors. Applied Physics Letters, 2002, : 159--161. Google Scholar

[76] Yoon J, Clarke J, Gildemeister J M. Single superconducting quantum interference device multiplexer for arrays of low-temperature sensors. Appl Phys Lett, 2001, 78: 371-373 CrossRef ADS Google Scholar

[77] P. Oxley, P. A. Ade, C. Baccigalupi et al. The EBEX experiment. in Infrared Spaceborne Remote Sensing XII, 2004, 5543: 320-331: International Society for Optics and Photonics. Google Scholar

[78] J. Ruhl, P. A. Ade, J. E. Carlstrom et al. The south pole telescope. in Millimeter and Submillimeter Detectors for Astronomy II, 2004, vol. 5498, pp. 11-29: International Society for Optics and Photonics. Google Scholar

[79] Dobbs M, Halverson N W, Ade P A R. APEX-SZ first light and instrument status. New Astron Rev, 2006, 50: 960-968 CrossRef ADS Google Scholar

[80] Niemack M D, Beyer J, Cho H M. Code-division SQUID multiplexing. Appl Phys Lett, 2010, 96: 163509 CrossRef ADS Google Scholar

[81] D. A. Bennett, J. A. Mates, J. D. Gard et al. Integration of tes microcalorimeters with microwave squid multiplexed readout. IEEE Transactions on Applied Superconductivity, 2014, 25: 1--5. Google Scholar

[82] Irwin K D, Lehnert K W. Microwave SQUID multiplexer. Appl Phys Lett, 2004, 85: 2107-2109 CrossRef ADS Google Scholar

[83] Mates J A B, Becker D T, Bennett D A. Simultaneous readout of 128 X-ray and gamma-ray transition-edge microcalorimeters using microwave SQUID multiplexing. Appl Phys Lett, 2017, 111: 062601 CrossRef ADS Google Scholar

[84] Stanchfield S M, Ade P A R, Aguirre J. Development of a Microwave SQUID-Multiplexed TES Array for MUSTANG-2. J Low Temp Phys, 2016, 184: 460-465 CrossRef ADS Google Scholar

[85] Smith S J, Adams J S, Bailey C N. Small Pitch Transition-Edge Sensors with Broadband High Spectral Resolution for Solar Physics. J Low Temp Phys, 2012, 167: 168-175 CrossRef ADS Google Scholar

[86] M. Eckart, J. Adams, S. Bandler et al. Large-Absorber TES X-ray Microcalorimeters and the Micro-X Detector Array. in AIP Conference Proceedings, 2009, 1185: 699-702: American Institute of Physics. Google Scholar

[87] Morgan K M, Pappas C G, Bennett D A. Dependence of transition width on current and critical current in transition-edge sensors. Appl Phys Lett, 2017, 110: 212602 CrossRef ADS Google Scholar

[88] Hays-Wehle J P, Schmidt D R, Ullom J N. Thermal Conductance Engineering for High-Speed TES Microcalorimeters. J Low Temp Phys, 2016, 184: 492-497 CrossRef ADS Google Scholar

[89] Wollman D A, Nam S W, Newbury D E. Superconducting transition-edge-microcalorimeter X-ray spectrometer with 2eV energy resolution at 1.5keV. Nucl Instruments Methods Phys Res Sect A-Accelerators Spectrometers Detectors Associated Equipment, 2000, 444: 145-150 CrossRef Google Scholar

[90] Wood G H, White B L. Pulses Induced in Tunneling Currents Between Superconductors by Alpha-Particle Bombardment. Appl Phys Lett, 1969, 15: 237-239 CrossRef ADS Google Scholar

[91] Peacock A, Verhoeve P, Rando N. Single optical photon detection with a superconducting tunnel junction. Nature, 1996, 381: 135-137 CrossRef ADS Google Scholar

[92] Kozin M G, Romashkina I L, Sergeev S A. STJ X-ray detectors with titanium sublayer. Nucl Instruments Methods Phys Res Sect A-Accelerators Spectrometers Detectors Associated Equipment, 2004, 520: 250-253 CrossRef ADS Google Scholar

[93] Twerenbold D. Nonequilibrium model of the superconducting tunneling junction x-ray detector. Phys Rev B, 1986, 34: 7748-7759 CrossRef ADS Google Scholar

[94] Gray K E. A superconducting transistor. Appl Phys Lett, 1978, 32: 392-395 CrossRef ADS Google Scholar

[95] P. Lerch,A. Zehnder. Quantum Giaever detectors: STJ's. in Cryogenic particle detection: Springer, 2005. 217--266. Google Scholar

[96] Angloher G, Hettl P, Huber M. Energy resolution of 12 eV at 5.9 keV from Al-superconducting tunnel junction detectors. J Appl Phys, 2001, 89: 1425-1429 CrossRef ADS Google Scholar

[97] Ukibe M, Fujii G, Shiki S. Modification of Layer Structures of Superconducting Tunnel Junctions to Improve X-ray Energy Resolution. J Low Temp Phys, 2016, 184: 200-205 CrossRef ADS Google Scholar

[98] S. Doyle, J. Naylon, J. Cox et al. Kinetic inductance detectors for 200$\mu$m astronomy. in Millimeter and Submillimeter Detectors and Instrumentation for Astronomy III, 2006, vol. 6275, p. 62751O: International Society for Optics and Photonics. Google Scholar

[99] Doyle S, Mauskopf P, Naylon J. Lumped Element Kinetic Inductance Detectors. J Low Temp Phys, 2008, 151: 530-536 CrossRef ADS Google Scholar

[100] Yang C, Niu R R, Guo Z S. Lumped element kinetic inductance detectors based on two-gap MgB$_{2}$ thin films. Appl Phys Lett, 2018, 112: 022601 CrossRef ADS Google Scholar

[101] Nam S B. Theory of Electromagnetic Properties of Superconducting and Normal Systems. I. Phys Rev, 1967, 156: 470-486 CrossRef ADS Google Scholar

[102] Day P K, Leduc H G, Goldin A. Antenna-coupled microwave kinetic inductance detectors. Nucl Instruments Methods Phys Res Sect A-Accelerators Spectrometers Detectors Associated Equipment, 2006, 559: 561-563 CrossRef ADS Google Scholar

[103] S. Doyle. Lumped element Kinetic Inductance Detectors. Cardiff University, 2008. Google Scholar

[104] M. Rösch, Development of lumped element kinetic inductance detectors for mm-wave astronomy at the IRAM 30 m telescope. KIT Scientific Publishing, 2014. Google Scholar

[105] Bueno J, Murugesan V, Karatsu K. Ultrasensitive Kilo-Pixel Imaging Array of Photon Noise-Limited Kinetic Inductance Detectors Over an Octave of Bandwidth for THz Astronomy. J Low Temp Phys, 2018, 193: 96-102 CrossRef ADS Google Scholar

[106] Zobrist N, Daal M, Corbin J Y. Disk Resonator Design for Kinetic Inductance Detectors. J Low Temp Phys, 2019, 194: 394-403 CrossRef ADS Google Scholar

[107] O'Connell A D, Ansmann M, Bialczak R C. Microwave dielectric loss at single photon energies and millikelvin temperatures. Appl Phys Lett, 2008, 92: 112903 CrossRef ADS arXiv Google Scholar

[108] Baselmans J, Yates S J C, Barends R. Noise and Sensitivity of Aluminum Kinetic Inductance Detectors for Sub-mm Astronomy. J Low Temp Phys, 2008, 151: 524-529 CrossRef ADS Google Scholar

[109] Gao J, Zmuidzinas J, Mazin B A. Noise properties of superconducting coplanar waveguide microwave resonators. Appl Phys Lett, 2007, 90: 102507 CrossRef ADS arXiv Google Scholar

[110] F. Marsili, F. Najafi, E. Dauler et al. Single-photon detectors based on ultranarrow superconducting nanowires. Nano letters, 2011, 11: 2048--2053. Google Scholar

[111] Caloz M, Perrenoud M, Autebert C. High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors. Appl Phys Lett, 2018, 112: 061103 CrossRef ADS arXiv Google Scholar

[112] Yang J K W, Kerman A J, Dauler E A. Modeling the Electrical and Thermal Response of Superconducting Nanowire Single-Photon Detectors. IEEE Trans Appl Supercond, 2007, 17: 581-585 CrossRef ADS Google Scholar

[113] Semenov A D, Gol'tsman G N, Korneev A A. Quantum detection by current carrying superconducting film. Physica C-Supercond, 2001, 351: 349-356 CrossRef Google Scholar

[114] Natarajan C M, Tanner M G, Hadfield R H. Superconducting nanowire single-photon detectors: physics and applications. Supercond Sci Technol, 2012, 25: 063001 CrossRef ADS arXiv Google Scholar

[115] Renema J J, Gaudio R, Wang Q. Experimental Test of Theories of the Detection Mechanism in a Nanowire Superconducting Single Photon Detector. Phys Rev Lett, 2014, 112: 117604 CrossRef ADS Google Scholar

[116] Eisaman M D, Fan J, Migdall A. Invited Review Article: Single-photon sources and detectors. Rev Sci Instruments, 2011, 82: 071101 CrossRef ADS Google Scholar

[117] Semenov A, Engel A, Hübers H W. Spectral cut-off in the efficiency of the resistive state formation caused by absorption of a single-photon in current-carrying superconducting nano-strips. Eur Phys J B, 2005, 47: 495-501 CrossRef ADS arXiv Google Scholar

[118] Zotova A N, Vodolazov D Y. Photon detection by current-carrying superconducting film: A time-dependent Ginzburg-Landau approach. Phys Rev B, 2012, 85: 024509 CrossRef ADS arXiv Google Scholar

[119] Bulaevskii L N, Graf M J, Batista C D. Vortex-induced dissipation in narrow current-biased thin-film superconducting strips. Phys Rev B, 2011, 83: 144526 CrossRef ADS arXiv Google Scholar

[120] W. Becker, Advanced time-correlated single photon counting techniques. Springer Science & Business Media, 2005. Google Scholar

[121] X. Zhang. Characteristics of tungsten silicide and its application for single X-ray photon detection. University of Zurich, 2018. Google Scholar

  • Figure 1

    Photons with energy $hf~>~2\Delta~$ are absorbed by superconducting detectors to break Cooper pairs and create quasiparticles.

  • Figure 2

    (a) A schematic diagram of the device showing the detector layers; (b) a scanning electron microscope (SEM) image of the array; (c) read-out circuit diagram [59]@Copyright 2015 AIP Publishing LLC.

  • Figure 3

    National Institute of Standards and Technology (NIST) time-division multiplexer. Each DC-biased TES detector (dark gray) is coupled to a normally closed SQUID switch (medium gray). The switches on a column are wired in a series to an array SQUID output amplifier (light gray) [69]@Copyright 2003 AIP Publishing LLC.

  • Figure 8

    Tunneling processes in a junction with both films superconducting. In both cases, the electrons flow in the same direction. This leads to the observation that X-rays absorbed in either of the films yield a signal with identical sign [93]@Copyright 1986 American Physical Society.

  • Figure 9

    Tracing from a photograph of the output pulse induced by an $\alpha~$-particle traversing junction. Dotted line represents the rms (root-mean-square) noise output from the amplifiers. Vertical scale calibrated by driving known step function currents through lumped constant small signal equivalent of the junction [90]@Copyright 1969 AIP Publishing LLC.

  • Figure 10

    Pulse height spectrum from a single aluminium STJs illuminated by the $^{55}$Mn X-ray lines complex. The inset shows a close-up view of the $K_{\alpha~1}$ and $K_{\alpha~2}$ lines from channel 1400 to 1430 of the top layer. The energy resolution for the $K_{\alpha~1}$ line was fitted with $\Delta~E~$= 12 eV (FWHM) [96]@Copyright 2001 AIP Publishing LLC.

  • Figure 11

    Equivalent circuit diagram of a KID.

  • Figure 12

    (Color online) (a) A TKID on a silicon substrate; (b) SEM of a TKID island [42]@Copyright 2015 AIP Publishing LLC.

  • Figure 13

    (Color online) Distribution of the fitted energies of 4970 absorbed X-ray photons from a Fe$^{55}$ source, measured at 170 mK. Based on the line splitting and the average line width, we calculate an energy resolution of 75 eV at 5.9 keV [42]@Copyright 2015 AIP Publishing LLC.

  • Figure 14

    (Color online) (a) SEM images of an SNSPD hydrogen silsesquioxane mask on NbN. The nanowires are 30 nm wide, and the pitch is 100 nm (inset), covering an active area of 1.03 $\mu$m$\times~$1.14 $\mu~$m (dashed frame) [110]@Copyright 2011 American Chemical Society. (b) System detection efficiency (red circles) and the dark count rate (blue squares) as a function of the bias current [111]@Copyright 2018 AIP Publishing LLC.

  • Figure 15

    (Color online) The basic operation principle of the SNSPD. (a) A schematic illustrating the detection cycle; (b) a simple electrical equivalent circuit of a SNSPD; and (c) a simulation of the output voltage pulse of the SNSPD [114]@Copyright 2012 IOP Publishing Ltd.

  • Figure 16

    (Color online) Sketches of the four main detection models. (a) The normal-core hot spot model; (b) the diffusion-based hot spot model; (c) the vortex nucleation model; and (d) the vortex crossing model [115]@Copyright 2014 American Physical Society.

  • Figure 17

    (a) SEM image of a partial 100-nm TaN SSPD. The microwires are 2.2 $\mu$m wide, and the pitch is 1.8 $\mu$m, covering an active area of 2.25 mm$\times~$2.25 mm. (b) A response pulse of this TaN SSPD for a Fe$^{55}$ X-ray source.

  • Table 1  

    Table 1A comparison of five superconducting detectors

    DetectorsEnergy resolutionCount rates (cps)Operating temperatureDecay timeDetection rangeReferences
    TES1.6 eV @ 5.9 keV$\sim~10^{2}~$$\sim~100$ mK$\sim~1$ ms$<$10 keV[32,37-39]
    STJs12 eV @ 5.9 keV10$^{3}$–10$^{4}$0.1 K–1.4 K$\sim~1~\mu~$s$<$6 keV[29,40,41]
    TKIDs75 eV @ 5.9 keV$\sim~10^{2}$$\sim~100$ mK$\sim~1$ ms$<$10 keV[42,43]
    X-SNSPD$\sim~10^{6}$$\sim~4$ K$\sim~10$ ns$<$10 keV[44,45]
    SDDs$\sim~150$ eV$\sim~10^{3}$$\sim~300$ K$\sim~5~\mu~$s$<$60 keV[6,8]