References
[1]
Ji
Y,
Zhang
J,
Wang
X.
Towards converged, collaborative and co-automatic (3C) optical networks.
Sci China Inf Sci,
2018, 61: 121301
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Towards converged, collaborative and co-automatic (3C) optical networks&author=Ji Y&author=Zhang J&author=Wang X&publication_year=2018&journal=Sci China Inf Sci&volume=61&pages=121301
[2]
Ji Y F, Zhang J W, Xiao Y M, et al. 5G flexible optical transport networks with large-capacity, low-latency and high-efficiency. China Commun, 2019, 16: 19--32.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ji Y F, Zhang J W, Xiao Y M, et al. 5G flexible optical transport networks with large-capacity, low-latency and high-efficiency. China Commun, 2019, 16: 19--32&
[3]
Ramaswami R, Sivarajan N K. Optical Networks: A Practical Perspective. 2nd ed. San Francisco: Morgan Kaufmann, 2002.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ramaswami R, Sivarajan N K. Optical Networks: A Practical Perspective. 2nd ed. San Francisco: Morgan Kaufmann, 2002&
[4]
Rafique D, Velasco L. Machine Learning for Network Automation: Overview, Architecture, and Applications. J Opt Commun Netw, 2018, 10:.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Rafique D, Velasco L. Machine Learning for Network Automation: Overview, Architecture, and Applications. J Opt Commun Netw, 2018, 10:&
[5]
Gupta
A,
Jha
R K.
A Survey of 5G Network: Architecture and Emerging Technologies.
IEEE Access,
2015, 3: 1206-1232
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Survey of 5G Network: Architecture and Emerging Technologies&author=Gupta A&author=Jha R K&publication_year=2015&journal=IEEE Access&volume=3&pages=1206-1232
[6]
Dong Z H, Khan F N, Sui Q, et al. Optical performance monitoring: a review of current and future technologies. J Lightw Technol, 2016, 34: 2.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dong Z H, Khan F N, Sui Q, et al. Optical performance monitoring: a review of current and future technologies. J Lightw Technol, 2016, 34: 2&
[7]
Musumeci G, Rottondi C, Nag S, Macaluso I, et al. A survey on application of machine learning techniques in optical networks. 2018,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Musumeci G, Rottondi C, Nag S, Macaluso I, et al. A survey on application of machine learning techniques in optical networks. 2018,&
[8]
Schmidhuber
J.
Deep learning in neural networks: an overview..
Neural Networks,
2015, 61: 85-117
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deep learning in neural networks: an overview.&author=Schmidhuber J&publication_year=2015&journal=Neural Networks&volume=61&pages=85-117
[9]
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521: 436--444.
Google Scholar
http://scholar.google.com/scholar_lookup?title=LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521: 436--444&
[10]
Barboza R, Bastos-Filho J C, Martins-Filho F J, et al. Self-adaptive erbium-doped fiber amplifiers using machine learning. In: Proceedings of IEEE Microwave and Optoelectronics Conference (IMOC), 2013.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Barboza R, Bastos-Filho J C, Martins-Filho F J, et al. Self-adaptive erbium-doped fiber amplifiers using machine learning. In: Proceedings of IEEE Microwave and Optoelectronics Conference (IMOC), 2013&
[11]
Huang Y S, Samoud W, Gutterman C L, et al. A machine learning approach for dynamic optical channel add/drop strategies that minimize EDFA power excursions. In: Proceedings of the 42nd European Conference on Optical Communication, 2016. 1--3.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Huang Y S, Samoud W, Gutterman C L, et al. A machine learning approach for dynamic optical channel add/drop strategies that minimize EDFA power excursions. In: Proceedings of the 42nd European Conference on Optical Communication, 2016. 1--3&
[12]
Huang Y S, Cho P B, Samadi P, et al. Dynamic power pre-adjustments with machine learning that mitigate EDFA excursions during defragmentation. In: Proceedings of Optical Fiber Communications Conference and Exposition (OFC), 2017. Th1J-2.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Huang Y S, Cho P B, Samadi P, et al. Dynamic power pre-adjustments with machine learning that mitigate EDFA excursions during defragmentation. In: Proceedings of Optical Fiber Communications Conference and Exposition (OFC), 2017. Th1J-2&
[13]
Tao
Z,
Dou
L,
Yan
W.
Multiplier-Free Intrachannel Nonlinearity Compensating Algorithm Operating at Symbol Rate.
J Lightwave Technol,
2011, 29: 2570-2576
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multiplier-Free Intrachannel Nonlinearity Compensating Algorithm Operating at Symbol Rate&author=Tao Z&author=Dou L&author=Yan W&publication_year=2011&journal=J Lightwave Technol&volume=29&pages=2570-2576
[14]
Wang D S, Zhang M, Li Z, et al. Nonlinear decision boundary created by a machine learning-based classifier to mitigate nonlinear phase noise. In: Proceedings of European Conference on Optical Communication, 2015.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang D S, Zhang M, Li Z, et al. Nonlinear decision boundary created by a machine learning-based classifier to mitigate nonlinear phase noise. In: Proceedings of European Conference on Optical Communication, 2015&
[15]
Li
X,
Feng
X,
Xiao
X.
Silicon Slot Waveguides With Low Transmission and Bending Losses at 1064 nm.
IEEE Photon Technol Lett,
2016, 28: 19-22
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon Slot Waveguides With Low Transmission and Bending Losses at 1064 nm&author=Li X&author=Feng X&author=Xiao X&publication_year=2016&journal=IEEE Photon Technol Lett&volume=28&pages=19-22
[16]
Khan
F N,
Yu
Y,
Tan
M C.
Experimental demonstration of joint OSNR monitoring and modulation format identification using asynchronous single channel sampling.
Opt Express,
2015, 23: 30337-30346
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Experimental demonstration of joint OSNR monitoring and modulation format identification using asynchronous single channel sampling&author=Khan F N&author=Yu Y&author=Tan M C&publication_year=2015&journal=Opt Express&volume=23&pages=30337-30346
[17]
Wang
D,
Wang
M,
Zhang
M.
Cost-effective and data size-adaptive OPM at intermediated node using convolutional neural network-based image processor.
Opt Express,
2019, 27: 9403-9419
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cost-effective and data size-adaptive OPM at intermediated node using convolutional neural network-based image processor&author=Wang D&author=Wang M&author=Zhang M&publication_year=2019&journal=Opt Express&volume=27&pages=9403-9419
[18]
Ullah
K,
Liu
X,
Jichuan
X.
A Polarization Parametric Method of Sensing the Scattering Signals From a Submicrometer Particle.
IEEE Photon Technol Lett,
2017, 29: 19-22
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Polarization Parametric Method of Sensing the Scattering Signals From a Submicrometer Particle&author=Ullah K&author=Liu X&author=Jichuan X&publication_year=2017&journal=IEEE Photon Technol Lett&volume=29&pages=19-22
[19]
Tanimura T, Hoshida T, Kato T, et al. Deep learningbased OSNR monitoring independent of modulation format, symbol rate and chromatic dispersion. In: Proceedings of European Conference on Optical Communication, 2016.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tanimura T, Hoshida T, Kato T, et al. Deep learningbased OSNR monitoring independent of modulation format, symbol rate and chromatic dispersion. In: Proceedings of European Conference on Optical Communication, 2016&
[20]
Wang
D,
Zhang
M,
Li
J.
Intelligent constellation diagram analyzer using convolutional neural network-based deep learning.
Opt Express,
2017, 25: 17150-17166
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Intelligent constellation diagram analyzer using convolutional neural network-based deep learning&author=Wang D&author=Zhang M&author=Li J&publication_year=2017&journal=Opt Express&volume=25&pages=17150-17166
[21]
Li
J,
Zhang
M,
Wang
D.
Joint atmospheric turbulence detection and adaptive demodulation technique using the CNN for the OAM-FSO communication.
Opt Express,
2018, 26: 10494-10508
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Joint atmospheric turbulence detection and adaptive demodulation technique using the CNN for the OAM-FSO communication&author=Li J&author=Zhang M&author=Wang D&publication_year=2018&journal=Opt Express&volume=26&pages=10494-10508
[22]
Shen S R T, Meng K, Lau P T A, et al. Optical performance monitoring using artificial neural network trained with asynchronous amplitude histograms. IEEE Photon Technol Lett, 2010, 22: 1665--1667.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shen S R T, Meng K, Lau P T A, et al. Optical performance monitoring using artificial neural network trained with asynchronous amplitude histograms. IEEE Photon Technol Lett, 2010, 22: 1665--1667&
[23]
Morais
R M,
Pedro
J.
Machine Learning Models for Estimating Quality of Transmission in DWDM Networks.
J Opt Commun Netw,
2018, 10: D84
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Machine Learning Models for Estimating Quality of Transmission in DWDM Networks&author=Morais R M&author=Pedro J&publication_year=2018&journal=J Opt Commun Netw&volume=10&pages=D84
[24]
Rottondi
C,
Barletta
L,
Giusti
A.
Machine-Learning Method for Quality of Transmission Prediction of Unestablished Lightpaths.
J Opt Commun Netw,
2018, 10: A286
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Machine-Learning Method for Quality of Transmission Prediction of Unestablished Lightpaths&author=Rottondi C&author=Barletta L&author=Giusti A&publication_year=2018&journal=J Opt Commun Netw&volume=10&pages=A286
[25]
Panayiotou
T,
Chatzis
S P,
Ellinas
G.
Performance Analysis of a Data-Driven Quality-of-Transmission Decision Approach on a Dynamic Multicast-Capable Metro Optical Network.
J Opt Commun Netw,
2017, 9: 98-108
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Performance Analysis of a Data-Driven Quality-of-Transmission Decision Approach on a Dynamic Multicast-Capable Metro Optical Network&author=Panayiotou T&author=Chatzis S P&author=Ellinas G&publication_year=2017&journal=J Opt Commun Netw&volume=9&pages=98-108
[26]
Proietti
R,
Chen
X,
Zhang
K.
Experimental Demonstration of Machine-Learning-Aided QoT Estimation in Multi-Domain Elastic Optical Networks with Alien Wavelengths.
J Opt Commun Netw,
2019, 11: A1
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Experimental Demonstration of Machine-Learning-Aided QoT Estimation in Multi-Domain Elastic Optical Networks with Alien Wavelengths&author=Proietti R&author=Chen X&author=Zhang K&publication_year=2019&journal=J Opt Commun Netw&volume=11&pages=A1
[27]
Wang
Z,
Zhang
M,
Wang
D.
Failure prediction using machine learning and time series in optical network.
Opt Express,
2017, 25: 18553-18565
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Failure prediction using machine learning and time series in optical network&author=Wang Z&author=Zhang M&author=Wang D&publication_year=2017&journal=Opt Express&volume=25&pages=18553-18565
[28]
Rafique
D,
Szyrkowiec
T,
Grieser
H.
Cognitive Assurance Architecture for Optical Network Fault Management.
J Lightwave Technol,
2018, 36: 1443-1450
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cognitive Assurance Architecture for Optical Network Fault Management&author=Rafique D&author=Szyrkowiec T&author=Grieser H&publication_year=2018&journal=J Lightwave Technol&volume=36&pages=1443-1450
[29]
Shariati
B,
Ruiz
M,
Comellas
J.
Learning From the Optical Spectrum: Failure Detection and Identification.
J Lightwave Technol,
2019, 37: 433-440
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Learning From the Optical Spectrum: Failure Detection and Identification&author=Shariati B&author=Ruiz M&author=Comellas J&publication_year=2019&journal=J Lightwave Technol&volume=37&pages=433-440
[30]
Zhang X, Hou W G, Guo L, et al. Failure recovery solutions using cognitive mechanisms for software defined optical networks. In: Processing of the 15th International Conference on Optical Communications and Networks (ICOCN), 2016.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang X, Hou W G, Guo L, et al. Failure recovery solutions using cognitive mechanisms for software defined optical networks. In: Processing of the 15th International Conference on Optical Communications and Networks (ICOCN), 2016&
[31]
Ruiz M, Fresi F, Vela P A, et al. Service-triggered failure identification/localization through monitoring of multiple parameters. In: Proceedings of European Conference on Optical Communication, 2016.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ruiz M, Fresi F, Vela P A, et al. Service-triggered failure identification/localization through monitoring of multiple parameters. In: Proceedings of European Conference on Optical Communication, 2016&
[32]
Wang
D,
Lou
L,
Zhang
M.
Dealing With Alarms in Optical Networks Using an Intelligent System.
IEEE Access,
2019, 7: 97760-97770
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dealing With Alarms in Optical Networks Using an Intelligent System&author=Wang D&author=Lou L&author=Zhang M&publication_year=2019&journal=IEEE Access&volume=7&pages=97760-97770
[33]
C?té
D.
Using Machine Learning in Communication Networks [Invited].
J Opt Commun Netw,
2018, 10: D100
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Using Machine Learning in Communication Networks [Invited]&author=C?té D&publication_year=2018&journal=J Opt Commun Netw&volume=10&pages=D100
[34]
Bensalem M, Singh K S, Jukan A. On detecting and preventing Jamming attacks with machine learning in optical networks. 2019,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bensalem M, Singh K S, Jukan A. On detecting and preventing Jamming attacks with machine learning in optical networks. 2019,&
[35]
Furdek M, Natalino C, Schiano M, et al. Experiment-based detection of service disruption attacks in optical networks using data analytics and unsupervised learning. In: Proceedings of SPIE, 2019.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Furdek M, Natalino C, Schiano M, et al. Experiment-based detection of service disruption attacks in optical networks using data analytics and unsupervised learning. In: Proceedings of SPIE, 2019&
[36]
Ruiz M, Fresi F, Vela P A, et al. Service-triggered failure identification/localization through monitoring of multiple parameters. In: Proceedings of European Conference on Optical Communication, 2016.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ruiz M, Fresi F, Vela P A, et al. Service-triggered failure identification/localization through monitoring of multiple parameters. In: Proceedings of European Conference on Optical Communication, 2016&
[37]
Singh K S, Bziuk W, Jukan A. A combined optical spectrum scrambling and defragmentation in multi-core fiber networks. In: Proceedings of IEEE International Conference on Communications (ICC), 2017.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Singh K S, Bziuk W, Jukan A. A combined optical spectrum scrambling and defragmentation in multi-core fiber networks. In: Proceedings of IEEE International Conference on Communications (ICC), 2017&
[38]
Lu W, Liang L, Kong B, et al. Leveraging predictive analytics to achieve knowledge-defined orchestration in a hybrid optical/electrical DC network: collaborative forecasting and decision making. In: Proceedings of Optical Fiber Communications Conference and Exposition (OFC), 2018.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lu W, Liang L, Kong B, et al. Leveraging predictive analytics to achieve knowledge-defined orchestration in a hybrid optical/electrical DC network: collaborative forecasting and decision making. In: Proceedings of Optical Fiber Communications Conference and Exposition (OFC), 2018&
[39]
Bo Wen
,
Shenai
R,
Sivalingam
K.
Routing, Wavelength and Time-Slot-Assignment Algorithms for Wavelength-Routed Optical WDM/TDM Networks.
J Lightwave Technol,
2005, 23: 2598-2609
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Routing, Wavelength and Time-Slot-Assignment Algorithms for Wavelength-Routed Optical WDM/TDM Networks&author=Bo Wen &author=Shenai R&author=Sivalingam K&publication_year=2005&journal=J Lightwave Technol&volume=23&pages=2598-2609
[40]
Christodoulopoulos
K,
Manousakis
K,
Varvarigos
E.
Offline Routing and Wavelength Assignment in Transparent WDM Networks.
IEEE/ACM Trans Networking,
2010, 18: 1557-1570
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Offline Routing and Wavelength Assignment in Transparent WDM Networks&author=Christodoulopoulos K&author=Manousakis K&author=Varvarigos E&publication_year=2010&journal=IEEE/ACM Trans Networking&volume=18&pages=1557-1570
[41]
Cavazzoni
C,
Barosco
V,
D'Alessandro
A.
The IP/MPLS Over ASON/GMPLS Test Bed of the IST Project LION.
J Lightwave Technol,
2003, 21: 2791-2803
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=The IP/MPLS Over ASON/GMPLS Test Bed of the IST Project LION&author=Cavazzoni C&author=Barosco V&author=D'Alessandro A&publication_year=2003&journal=J Lightwave Technol&volume=21&pages=2791-2803
[42]
Thyagaturu S A, Mercian A, McGarry P M, et al. Software Defined Optical Networks (SDONs): A Comprehensive Survey. IEEE Communications Surveys & Tutorials, 2016, 18: 2738-2786.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Thyagaturu S A, Mercian A, McGarry P M, et al. Software Defined Optical Networks (SDONs): A Comprehensive Survey. IEEE Communications Surveys & Tutorials, 2016, 18: 2738-2786&
[43]
Berthold
J E,
Ong
L Y.
Next-Generation Optical Network Architecture and Multidomain Issues.
Proc IEEE,
2012, 100: 1130-1139
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Next-Generation Optical Network Architecture and Multidomain Issues&author=Berthold J E&author=Ong L Y&publication_year=2012&journal=Proc IEEE&volume=100&pages=1130-1139
[44]
Salani M, Rottondi C, Tornatore M. Routing and spectrum assignment integrating machine-learning-based QoT estimation in elastic optical networks. In: Proceedings of IEEE Conference on Computer Communications, Paris, 2019. 1738--1746.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Salani M, Rottondi C, Tornatore M. Routing and spectrum assignment integrating machine-learning-based QoT estimation in elastic optical networks. In: Proceedings of IEEE Conference on Computer Communications, Paris, 2019. 1738--1746&
[45]
Mata
J,
de Miguel
I,
Durán
R J.
Artificial intelligence (AI) methods in optical networks: A comprehensive survey.
Optical Switching Networking,
2018, 28: 43-57
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Artificial intelligence (AI) methods in optical networks: A comprehensive survey&author=Mata J&author=de Miguel I&author=Durán R J&publication_year=2018&journal=Optical Switching Networking&volume=28&pages=43-57
[46]
Tan
M C,
Khan
F N,
Al-Arashi
W H.
Simultaneous Optical Performance Monitoring and Modulation Format/Bit-Rate Identification Using Principal Component Analysis.
J Opt Commun Netw,
2014, 6: 441-448
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Simultaneous Optical Performance Monitoring and Modulation Format/Bit-Rate Identification Using Principal Component Analysis&author=Tan M C&author=Khan F N&author=Al-Arashi W H&publication_year=2014&journal=J Opt Commun Netw&volume=6&pages=441-448
[47]
Lau
A P T,
Kahn
J M.
Signal Design and Detection in Presence of Nonlinear Phase Noise.
J Lightwave Technol,
2007, 25: 3008-3016
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Signal Design and Detection in Presence of Nonlinear Phase Noise&author=Lau A P T&author=Kahn J M&publication_year=2007&journal=J Lightwave Technol&volume=25&pages=3008-3016
[48]
Ip
E,
Kahn
J M.
Compensation of Dispersion and Nonlinear Impairments Using Digital Backpropagation.
J Lightwave Technol,
2008, 26: 3416-3425
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Compensation of Dispersion and Nonlinear Impairments Using Digital Backpropagation&author=Ip E&author=Kahn J M&publication_year=2008&journal=J Lightwave Technol&volume=26&pages=3416-3425
[49]
Stojanovic N, Huang Y, Hauske N F, et al. Mlse-based nonlinearity mitigation for wdm 112 gbit/s pdm-qpsk transmissions with digital coherent receiver. In: Proceedings of of Optical Fiber Communications Conference and Exposition (OFC), 2011.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stojanovic N, Huang Y, Hauske N F, et al. Mlse-based nonlinearity mitigation for wdm 112 gbit/s pdm-qpsk transmissions with digital coherent receiver. In: Proceedings of of Optical Fiber Communications Conference and Exposition (OFC), 2011&
[50]
Rafique
D,
Zhao
J,
Ellis
A D.
Compensation of Nonlinear Fibre Impairments in Coherent Systems Employing Spectrally Efficient Modulation Formats.
IEICE Trans Commun,
2011, E94-B: 1815-1822
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Compensation of Nonlinear Fibre Impairments in Coherent Systems Employing Spectrally Efficient Modulation Formats&author=Rafique D&author=Zhao J&author=Ellis A D&publication_year=2011&journal=IEICE Trans Commun&volume=E94-B&pages=1815-1822
[51]
Li M L, Yu S, Yang J, Chen Z X, et al. Nonparameter Nonlinear Phase Noise Mitigation by Using M-ary Support Vector Machine for Coherent Optical Systems. IEEE Photon J, 2013, 5:.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li M L, Yu S, Yang J, Chen Z X, et al. Nonparameter Nonlinear Phase Noise Mitigation by Using M-ary Support Vector Machine for Coherent Optical Systems. IEEE Photon J, 2013, 5:&
[52]
Nguyen T, Mhatli S, Giacoumidis E, et al. Fiber nonlinearity equalizer based on support vector classification for coherent optical OFDM. IEEE Photon J, 2016, 8:.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nguyen T, Mhatli S, Giacoumidis E, et al. Fiber nonlinearity equalizer based on support vector classification for coherent optical OFDM. IEEE Photon J, 2016, 8:&
[53]
Giacoumidis
E,
Mhatli
S,
Stephens
M F C.
Reduction of Nonlinear Intersubcarrier Intermixing in Coherent Optical OFDM by a Fast Newton-Based Support Vector Machine Nonlinear Equalizer.
J Lightwave Technol,
2017, 35: 2391-2397
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Reduction of Nonlinear Intersubcarrier Intermixing in Coherent Optical OFDM by a Fast Newton-Based Support Vector Machine Nonlinear Equalizer&author=Giacoumidis E&author=Mhatli S&author=Stephens M F C&publication_year=2017&journal=J Lightwave Technol&volume=35&pages=2391-2397
[54]
Zibar
D,
Winther
O,
Franceschi
N.
Nonlinear impairment compensation using expectation maximization for dispersion managed and unmanaged PDM 16-QAM transmission.
Opt Express,
2012, 20: B181
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nonlinear impairment compensation using expectation maximization for dispersion managed and unmanaged PDM 16-QAM transmission&author=Zibar D&author=Winther O&author=Franceschi N&publication_year=2012&journal=Opt Express&volume=20&pages=B181
[55]
Shen S R T and Lau P T A. Fiber nonlinearity compensation using extreme learning machine for DSP-based coherent communication systems. In: Proceedings of OECC, Kaohsiung, Taiwan, 2011. 816--817.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shen S R T and Lau P T A. Fiber nonlinearity compensation using extreme learning machine for DSP-based coherent communication systems. In: Proceedings of OECC, Kaohsiung, Taiwan, 2011. 816--817&
[56]
Huang
G B,
Zhu
Q Y,
Siew
C K.
Extreme learning machine: Theory and applications.
Neurocomputing,
2006, 70: 489-501
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Extreme learning machine: Theory and applications&author=Huang G B&author=Zhu Q Y&author=Siew C K&publication_year=2006&journal=Neurocomputing&volume=70&pages=489-501
[57]
Chomcyz B. Planning Fiber Optic Networks. New York: McGraw-Hill, 2009.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chomcyz B. Planning Fiber Optic Networks. New York: McGraw-Hill, 2009&
[58]
Dods S D, Anderson T B. Optical performance monitoring technique using delay tap asynchronous waveform sampling. In: Proceedings of Optical Fiber Communications Conference and Exposition (OFC), 2007.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dods S D, Anderson T B. Optical performance monitoring technique using delay tap asynchronous waveform sampling. In: Proceedings of Optical Fiber Communications Conference and Exposition (OFC), 2007&
[59]
Savory
S J.
Digital Coherent Optical Receivers: Algorithms and Subsystems.
IEEE J Sel Top Quantum Electron,
2010, 16: 1164-1179
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Digital Coherent Optical Receivers: Algorithms and Subsystems&author=Savory S J&publication_year=2010&journal=IEEE J Sel Top Quantum Electron&volume=16&pages=1164-1179
[60]
Khan
F N,
Zhong
K,
Zhou
X.
Joint OSNR monitoring and modulation format identification in digital coherent receivers using deep neural networks.
Opt Express,
2017, 25: 17767-17776
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Joint OSNR monitoring and modulation format identification in digital coherent receivers using deep neural networks&author=Khan F N&author=Zhong K&author=Zhou X&publication_year=2017&journal=Opt Express&volume=25&pages=17767-17776
[61]
Tanimura T, Hoshida T, Kato T, et al. Deep learningbased OSNR monitoring independent of modulation format, symbol rate and chromatic dispersion. In: Proceedings of European Conference on Optical Communication, 2016, Tu2C.2.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tanimura T, Hoshida T, Kato T, et al. Deep learningbased OSNR monitoring independent of modulation format, symbol rate and chromatic dispersion. In: Proceedings of European Conference on Optical Communication, 2016, Tu2C.2&
[62]
Jones T R, Diniz C M J, Yankov P M, et al. Prediction of Second-Order Moments of Inter-Channel Interference with Principal Component Analysis and Neural Networks. In: Proceedings of European Conference on Optical Communication, 2017.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Jones T R, Diniz C M J, Yankov P M, et al. Prediction of Second-Order Moments of Inter-Channel Interference with Principal Component Analysis and Neural Networks. In: Proceedings of European Conference on Optical Communication, 2017&
[63]
Kashi S A, Zhuge Q B, Cartledge C J, et al. Fiber nonlinear noise-to-signal ratio monitoring using artificial neural networks. In: Proceedings of European Conference on Optical Communication, 2017.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kashi S A, Zhuge Q B, Cartledge C J, et al. Fiber nonlinear noise-to-signal ratio monitoring using artificial neural networks. In: Proceedings of European Conference on Optical Communication, 2017&
[64]
Zhuge Q B, Zeng X B, Lun H Z, et al. Application of Machine Learning in Fiber Nonlinearity Modeling and Monitoring for Elastic Optical Networks. J Lightw Technol, 2019, 37:.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhuge Q B, Zeng X B, Lun H Z, et al. Application of Machine Learning in Fiber Nonlinearity Modeling and Monitoring for Elastic Optical Networks. J Lightw Technol, 2019, 37:&
[65]
Vaquero Caballero J G, Ives J F, Laperle C, et al. Machine Learning Based Linear and Nonlinear Noise Estimation. J Opt Commun Netw, 2018, 10:.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Vaquero Caballero J G, Ives J F, Laperle C, et al. Machine Learning Based Linear and Nonlinear Noise Estimation. J Opt Commun Netw, 2018, 10:&
[66]
Willner E A, and Hoanca B. Fixed and tunable management of fiber chromatic dispersion. in Optical Fiber Telecommunications, 2002. 642--724.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Willner E A, and Hoanca B. Fixed and tunable management of fiber chromatic dispersion. in Optical Fiber Telecommunications, 2002. 642--724&
[67]
Kogelnik H, Jopson M R, and Nelson E L. Polarization mode dispersion. in Optical Fiber Telecommunications, 2002.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kogelnik H, Jopson M R, and Nelson E L. Polarization mode dispersion. in Optical Fiber Telecommunications, 2002&
[68]
Dong Z, Sui Q, Lau P T A, et al. Optical Performance Monitoring in DSP-based Coherent Optical Systems. In: Proceedings of Optical Fiber Communications Conference and Exposition (OFC), 2015.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dong Z, Sui Q, Lau P T A, et al. Optical Performance Monitoring in DSP-based Coherent Optical Systems. In: Proceedings of Optical Fiber Communications Conference and Exposition (OFC), 2015&
[69]
Kozicki
B,
Takuya
O,
Hidehiko
T.
Optical Performance Monitoring of Phase-Modulated Signals Using Asynchronous Amplitude Histogram Analysis.
J Lightwave Technol,
2008, 26: 1353-1361
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Optical Performance Monitoring of Phase-Modulated Signals Using Asynchronous Amplitude Histogram Analysis&author=Kozicki B&author=Takuya O&author=Hidehiko T&publication_year=2008&journal=J Lightwave Technol&volume=26&pages=1353-1361
[70]
Luis
R S,
Teixeira
A,
Monteiro
P.
Optical Signal-to-Noise Ratio Estimation Using Reference Asynchronous Histograms.
J Lightwave Technol,
2009, 27: 731-743
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Optical Signal-to-Noise Ratio Estimation Using Reference Asynchronous Histograms&author=Luis R S&author=Teixeira A&author=Monteiro P&publication_year=2009&journal=J Lightwave Technol&volume=27&pages=731-743
[71]
Li
Z,
Jian
Z,
Cheng
L.
Signed chromatic dispersion monitoring of 100Gbit/s CS-RZ DQPSK signal by evaluating the asymmetry ratio of delay tap sampling.
Opt Express,
2010, 18: 3149-3157
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Signed chromatic dispersion monitoring of 100Gbit/s CS-RZ DQPSK signal by evaluating the asymmetry ratio of delay tap sampling&author=Li Z&author=Jian Z&author=Cheng L&publication_year=2010&journal=Opt Express&volume=18&pages=3149-3157
[72]
Khan
F N,
Lau
A P T,
Li
Z.
Statistical Analysis of Optical Signal-to-Noise Ratio Monitoring Using Delay-Tap Sampling.
IEEE Photon Technol Lett,
2010, 22: 149-151
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Statistical Analysis of Optical Signal-to-Noise Ratio Monitoring Using Delay-Tap Sampling&author=Khan F N&author=Lau A P T&author=Li Z&publication_year=2010&journal=IEEE Photon Technol Lett&volume=22&pages=149-151
[73]
Kozicki
B,
Maruta
A,
Kitayama
K.
Transparent performance monitoring of RZ-DQPSK systems employing delay-tap sampling.
J Opt Netw,
2007, 6: 1257-1269
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Transparent performance monitoring of RZ-DQPSK systems employing delay-tap sampling&author=Kozicki B&author=Maruta A&author=Kitayama K&publication_year=2007&journal=J Opt Netw&volume=6&pages=1257-1269
[74]
Choi
H Y,
Takushima
Y,
Chung
Y C.
Optical performance monitoring technique using asynchronous amplitude and phase histograms.
Opt Express,
2009, 17: 23953-23958
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Optical performance monitoring technique using asynchronous amplitude and phase histograms&author=Choi H Y&author=Takushima Y&author=Chung Y C&publication_year=2009&journal=Opt Express&volume=17&pages=23953-23958
[75]
Khan
F N,
Lau
A P T,
Zhaohui Li
A P T.
OSNR Monitoring for RZ-DQPSK Systems Using Half-Symbol Delay-Tap Sampling Technique.
IEEE Photon Technol Lett,
2010, 22: 823-825
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=OSNR Monitoring for RZ-DQPSK Systems Using Half-Symbol Delay-Tap Sampling Technique&author=Khan F N&author=Lau A P T&author=Zhaohui Li A P T&publication_year=2010&journal=IEEE Photon Technol Lett&volume=22&pages=823-825
[76]
Li J, Wang D, and Zhang M. Low-Complexity Adaptive Chromatic Dispersion Estimation Scheme Using Machine Learning for Coherent Long-Reach Passive Optical Networks. IEEE Photon J, 2019, 11:.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li J, Wang D, and Zhang M. Low-Complexity Adaptive Chromatic Dispersion Estimation Scheme Using Machine Learning for Coherent Long-Reach Passive Optical Networks. IEEE Photon J, 2019, 11:&
[77]
Rottondi
C,
Barletta
L,
Giusti
A.
Machine-Learning Method for Quality of Transmission Prediction of Unestablished Lightpaths.
J Opt Commun Netw,
2018, 10: A286
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Machine-Learning Method for Quality of Transmission Prediction of Unestablished Lightpaths&author=Rottondi C&author=Barletta L&author=Giusti A&publication_year=2018&journal=J Opt Commun Netw&volume=10&pages=A286
[78]
Jimenez
T,
Aguado
J C,
de Miguel
I.
A Cognitive Quality of Transmission Estimator for Core Optical Networks.
J Lightwave Technol,
2013, 31: 942-951
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Cognitive Quality of Transmission Estimator for Core Optical Networks&author=Jimenez T&author=Aguado J C&author=de Miguel I&publication_year=2013&journal=J Lightwave Technol&volume=31&pages=942-951
[79]
Leung
H C,
Leung
C S,
Wong
E W M.
Extreme Learning Machine for Estimating Blocking Probability of Bufferless OBS/OPS Networks.
J Opt Commun Netw,
2017, 9: 682-692
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Extreme Learning Machine for Estimating Blocking Probability of Bufferless OBS/OPS Networks&author=Leung H C&author=Leung C S&author=Wong E W M&publication_year=2017&journal=J Opt Commun Netw&volume=9&pages=682-692
[80]
Sartzetakis
I,
Christodoulopoulos
K K,
Varvarigos
E M.
Accurate Quality of Transmission Estimation With Machine Learning.
J Opt Commun Netw,
2019, 11: 140-150
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Accurate Quality of Transmission Estimation With Machine Learning&author=Sartzetakis I&author=Christodoulopoulos K K&author=Varvarigos E M&publication_year=2019&journal=J Opt Commun Netw&volume=11&pages=140-150
[81]
Mo W Y, Huang Y K, Zhang S L, et al. ANN-Based Transfer Learning for QoT prediction in real-time mixed line-rate systems. In: Proceedings of Optical Fiber Communications Conference and Exposition (OFC), San Diego, 2018. 1--3.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mo W Y, Huang Y K, Zhang S L, et al. ANN-Based Transfer Learning for QoT prediction in real-time mixed line-rate systems. In: Proceedings of Optical Fiber Communications Conference and Exposition (OFC), San Diego, 2018. 1--3&
[82]
Morais
R M,
Pedro
J.
Machine Learning Models for Estimating Quality of Transmission in DWDM Networks.
J Opt Commun Netw,
2018, 10: D84
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Machine Learning Models for Estimating Quality of Transmission in DWDM Networks&author=Morais R M&author=Pedro J&publication_year=2018&journal=J Opt Commun Netw&volume=10&pages=D84
[83]
Gu R T, Qu Y Y, Lian M, et al. Flexible optical network enabled proactive cross-layer restructuring for 5G/B5G backhaul network with machine learning engine. In: Proceeding of Optical Fiber Communication Conference and Exhibition (OFC), San Diego, 2020.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gu R T, Qu Y Y, Lian M, et al. Flexible optical network enabled proactive cross-layer restructuring for 5G/B5G backhaul network with machine learning engine. In: Proceeding of Optical Fiber Communication Conference and Exhibition (OFC), San Diego, 2020&
[84]
Guo Q Z, Gu R T, Wang Z H, et al. Proactive dynamic network slicing with deep learning based short-term traffic prediction for 5G transport network. In: Proceeding of Optical Fiber Communication Conference and Exhibition (OFC), San Diego, 2019.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Guo Q Z, Gu R T, Wang Z H, et al. Proactive dynamic network slicing with deep learning based short-term traffic prediction for 5G transport network. In: Proceeding of Optical Fiber Communication Conference and Exhibition (OFC), San Diego, 2019&
[85]
Guo
J,
Zhu
Z.
When Deep Learning Meets Inter-Datacenter Optical Network Management: Advantages and Vulnerabilities.
J Lightwave Technol,
2018, 36: 4761-4773
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=When Deep Learning Meets Inter-Datacenter Optical Network Management: Advantages and Vulnerabilities&author=Guo J&author=Zhu Z&publication_year=2018&journal=J Lightwave Technol&volume=36&pages=4761-4773
[86]
Balanici M, Pachnicke S. Machine learning-based traffic prediction for optical switching resource allocation in hybrid intra-data center networks. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC), San Diego, 2019. 1--3.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Balanici M, Pachnicke S. Machine learning-based traffic prediction for optical switching resource allocation in hybrid intra-data center networks. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC), San Diego, 2019. 1--3&
[87]
Singh
S K,
Jukan
A.
Machine-Learning-Based Prediction for Resource (Re)allocation in Optical Data Center Networks.
J Opt Commun Netw,
2018, 10: D12
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Machine-Learning-Based Prediction for Resource (Re)allocation in Optical Data Center Networks&author=Singh S K&author=Jukan A&publication_year=2018&journal=J Opt Commun Netw&volume=10&pages=D12
[88]
Chen X L, Proietti R, and Yoo J B S. Building autonomic elastic optical networks with deep reinforcement learning. IEEE Commun Magaz, 2019, 57: 20--26.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chen X L, Proietti R, and Yoo J B S. Building autonomic elastic optical networks with deep reinforcement learning. IEEE Commun Magaz, 2019, 57: 20--26&
[89]
Troia S, Rodriguez A, Martin I, et al. Machine-learning-assisted routing in SDN-based optical networks. In: Proceedings of 2018 European Conference on Optical Communication, Rome, 2018. 1--3.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Troia S, Rodriguez A, Martin I, et al. Machine-learning-assisted routing in SDN-based optical networks. In: Proceedings of 2018 European Conference on Optical Communication, Rome, 2018. 1--3&
[90]
Zhong Z Z, Hua N, Yuan Z G, et al. Routing without routing algorithms: an AI-based routing paradigm for multi-domain optical networks. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC), San Diego, 2019. 1--3.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhong Z Z, Hua N, Yuan Z G, et al. Routing without routing algorithms: an AI-based routing paradigm for multi-domain optical networks. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC), San Diego, 2019. 1--3&
[91]
Belbekkouche A, Hafid A, Gendreau M. Novel reinforcement learning-based approaches to reduce loss probability in buffer-less OBS networks. Computer Networks, 2009.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Belbekkouche A, Hafid A, Gendreau M. Novel reinforcement learning-based approaches to reduce loss probability in buffer-less OBS networks. Computer Networks, 2009&
[92]
Kiran V Y, Venkatesh T, Murthy S R C. A multi-agent reinforcement learning approach to path selection in optical burst switching networks. In: Proceedings of 2009 IEEE International Conference on Communications, Dresden, 2009. 1--5.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kiran V Y, Venkatesh T, Murthy S R C. A multi-agent reinforcement learning approach to path selection in optical burst switching networks. In: Proceedings of 2009 IEEE International Conference on Communications, Dresden, 2009. 1--5&
[93]
Jin
W,
Gu
R,
Tan
Y.
Proactive Grooming With Delay Optimization in Sliceable Elastic Optical Network.
IEEE Access,
2019, 7: 105030-105040
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Proactive Grooming With Delay Optimization in Sliceable Elastic Optical Network&author=Jin W&author=Gu R&author=Tan Y&publication_year=2019&journal=IEEE Access&volume=7&pages=105030-105040
[94]
Gu
R,
Zhang
S,
Ji
Y.
Network slicing and efficient ONU migration for reliable communications in converged vehicular and fixed access network.
Vehicular Commun,
2018, 11: 57-67
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Network slicing and efficient ONU migration for reliable communications in converged vehicular and fixed access network&author=Gu R&author=Zhang S&author=Ji Y&publication_year=2018&journal=Vehicular Commun&volume=11&pages=57-67
[95]
Gu R T, Cen M Y, Wang L H, et al. Integrated optical-wireless resource slicing management for 5G service-based architecture and multi-level RAN. In: Proceeding of Optical Fiber Communication Conference and Exhibition (OFC), San Diego, 2018.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gu R T, Cen M Y, Wang L H, et al. Integrated optical-wireless resource slicing management for 5G service-based architecture and multi-level RAN. In: Proceeding of Optical Fiber Communication Conference and Exhibition (OFC), San Diego, 2018&
[96]
Dvalos J E, Barn B. A survey on algorithmic aspects of virtual optical network embedding for cloud networks. IEEE Access, 2018, 6: 20893--20906.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dvalos J E, Barn B. A survey on algorithmic aspects of virtual optical network embedding for cloud networks. IEEE Access, 2018, 6: 20893--20906&
[97]
Wang Y, Cao X J, Pan Y. A study of the routing and spectrum allocation in spectrum-sliced Elastic Optical Path networks. In: Proceedings IEEE INFOCOM, Shanghai, 2011. 1503--1511.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang Y, Cao X J, Pan Y. A study of the routing and spectrum allocation in spectrum-sliced Elastic Optical Path networks. In: Proceedings IEEE INFOCOM, Shanghai, 2011. 1503--1511&
[98]
Martin
I,
Troia
S,
Hernandez
J A.
Machine Learning-Based Routing and Wavelength Assignment in Software-Defined Optical Networks.
IEEE Trans Netw Serv Manage,
2019, 16: 871-883
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Machine Learning-Based Routing and Wavelength Assignment in Software-Defined Optical Networks&author=Martin I&author=Troia S&author=Hernandez J A&publication_year=2019&journal=IEEE Trans Netw Serv Manage&volume=16&pages=871-883
[99]
Pointurier Y, Heidari F. Reinforcement learning based routing in all-optical networks. In: Proceedings of 2007 4th International Conference on Broadband Communications, Networks and Systems (BROADNETS'07), Raleigh, 2007. 919--921.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Pointurier Y, Heidari F. Reinforcement learning based routing in all-optical networks. In: Proceedings of 2007 4th International Conference on Broadband Communications, Networks and Systems (BROADNETS'07), Raleigh, 2007. 919--921&
[100]
Chen
X,
Li
B,
Proietti
R.
DeepRMSA: A Deep Reinforcement Learning Framework for Routing, Modulation and Spectrum Assignment in Elastic Optical Networks.
J Lightwave Technol,
2019, 37: 4155-4163
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=DeepRMSA: A Deep Reinforcement Learning Framework for Routing, Modulation and Spectrum Assignment in Elastic Optical Networks&author=Chen X&author=Li B&author=Proietti R&publication_year=2019&journal=J Lightwave Technol&volume=37&pages=4155-4163
[101]
Li
B,
Lu
W,
Zhu
Z.
Deep-NFVOrch: leveraging deep reinforcement learning to achieve adaptive vNF service chaining in DCI-EONs.
J Opt Commun Netw,
2020, 12: A18
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deep-NFVOrch: leveraging deep reinforcement learning to achieve adaptive vNF service chaining in DCI-EONs&author=Li B&author=Lu W&author=Zhu Z&publication_year=2020&journal=J Opt Commun Netw&volume=12&pages=A18
[102]
Lian M, Gu R T, Qu Y Y, et al. Flexible optical network enabled hybrid recovery for edge network with reinforcement learning. In: Proceeding of Optical Fiber Communication Conference and Exhibition (OFC), San Diego, 2020.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lian M, Gu R T, Qu Y Y, et al. Flexible optical network enabled hybrid recovery for edge network with reinforcement learning. In: Proceeding of Optical Fiber Communication Conference and Exhibition (OFC), San Diego, 2020&
[103]
Wang
D,
Lou
L,
Zhang
M.
Dealing With Alarms in Optical Networks Using an Intelligent System.
IEEE Access,
2019, 7: 97760-97770
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dealing With Alarms in Optical Networks Using an Intelligent System&author=Wang D&author=Lou L&author=Zhang M&publication_year=2019&journal=IEEE Access&volume=7&pages=97760-97770
[104]
Zhao X D, Yang H, Guo H F, et al. Accurate fault location based on deep neural evolution network in optical networks for 5G and beyond. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC), San Diego, 2019. 1--3.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhao X D, Yang H, Guo H F, et al. Accurate fault location based on deep neural evolution network in optical networks for 5G and beyond. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC), San Diego, 2019. 1--3&
[105]
Yang
H,
Wang
B,
Yao
Q.
Efficient Hybrid Multi-Faults Location Based on Hopfield Neural Network in 5G Coexisting Radio and Optical Wireless Networks.
IEEE Trans Cogn Commun Netw,
2019, 5: 1218-1228
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Efficient Hybrid Multi-Faults Location Based on Hopfield Neural Network in 5G Coexisting Radio and Optical Wireless Networks&author=Yang H&author=Wang B&author=Yao Q&publication_year=2019&journal=IEEE Trans Cogn Commun Netw&volume=5&pages=1218-1228
[106]
Vela P A, Ruiz M, and Velasco L. Applying data visualization for failure localization. In: Proceedings of Optical Fiber Communications Conference and Exposition (OFC), San Diego, 2018. 1--3.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Vela P A, Ruiz M, and Velasco L. Applying data visualization for failure localization. In: Proceedings of Optical Fiber Communications Conference and Exposition (OFC), San Diego, 2018. 1--3&