logo

SCIENCE CHINA Information Sciences, Volume 63 , Issue 10 : 202304(2020) https://doi.org/10.1007/s11432-020-2853-9

Synthesis-free directional modulation for retrodirective frequency diverse array

More info
  • ReceivedFeb 13, 2020
  • AcceptedMar 25, 2020
  • PublishedSep 16, 2020

Abstract


Acknowledgment

This work was supported in part by National Natural Science Foundation of China (Grant Nos. 61620106001, U1836201).


References

[1] Daly M P, Bernhard J T. Beamsteering in Pattern Reconfigurable Arrays Using Directional Modulation. IEEE Trans Antennas Propagat, 2010, 58: 2259-2265 CrossRef ADS Google Scholar

[2] Daly M P, Daly E L, Bernhard J T. Demonstration of Directional Modulation Using a Phased Array. IEEE Trans Antennas Propagat, 2010, 58: 1545-1550 CrossRef ADS Google Scholar

[3] Shi H, Alan T. Direction dependent antenna modulation using a two element array. In: Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), Rome, 2011. 812--815. Google Scholar

[4] Shi H, Tennant A. Secure physical-layer communication based on directly modulated antenna arrays. In: Proceedings of Loughborough Antennas Propagation Conference (LAPC), Loughborough, 2012. 1--4. Google Scholar

[5] Liu F, Wang L, Xie J. Directional Modulation Technique for Linear Sparse Arrays. IEEE Access, 2019, 7: 13230-13240 CrossRef Google Scholar

[6] Ding Y, Fusco V F. A Vector Approach for the Analysis and Synthesis of Directional Modulation Transmitters. IEEE Trans Antennas Propagat, 2014, 62: 361-370 CrossRef ADS Google Scholar

[7] Daly M P, Bernhard J T. Directional Modulation Technique for Phased Arrays. IEEE Trans Antennas Propagat, 2009, 57: 2633-2640 CrossRef ADS Google Scholar

[8] Babakhani A, Rutledge D B, Hajimiri A. A near-field modulation technique using antenna reflector switching. In: Proceedings of 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, IEEE, 2008. 188--605. Google Scholar

[9] Valliappan N, Lozano A, Heath R W. Antenna Subset Modulation for Secure Millimeter-Wave Wireless Communication. IEEE Trans Commun, 2013, 61: 3231-3245 CrossRef Google Scholar

[10] Hu J, Shu F, Li J. Robust Synthesis Method for Secure Directional Modulation With Imperfect Direction Angle. IEEE Commun Lett, 2016, 20: 1084-1087 CrossRef Google Scholar

[11] Shu F, Wu X, Li J. Robust Synthesis Scheme for Secure Multi-Beam Directional Modulation in Broadcasting Systems. IEEE Access, 2016, 4: 6614-6623 CrossRef Google Scholar

[12] Ding Y, Fusco V. Orthogonal Vector Approach for Synthesis of Multi-Beam Directional Modulation Transmitters. Antennas Wirel Propag Lett, 2015, 14: 1330-1333 CrossRef ADS Google Scholar

[13] Ding Y, Fusco V. A Synthesis-Free Directional Modulation Transmitter Using Retrodirective Array. IEEE J Sel Top Signal Process, 2017, 11: 428-441 CrossRef ADS Google Scholar

[14] Lu Z, Sun L, Zhang S. Optimal power allocation for secure directional modulation networks with a full-duplex UAV user. Sci China Inf Sci, 2019, 62: 80304 CrossRef Google Scholar

[15] Du C, Zhang Z, Wang X. Optimal Duplex Mode Selection for D2D-Aided Underlaying Cellular Networks. IEEE Trans Veh Technol, 2020, 69: 3119-3134 CrossRef Google Scholar

[16] Luo S, Zhang Z, Wang S. Network for hypersonic UCAV swarms. Sci China Inf Sci, 2020, 63: 140311 CrossRef Google Scholar

[17] Rong B, Zhang Z, Zhao X. Robust Superimposed Training Designs for MIMO Relaying Systems Under General Power Constraints. IEEE Access, 2019, 7: 80404-80420 CrossRef Google Scholar

[18] Yan S, Yang N, Land I. Three Artificial-Noise-Aided Secure Transmission Schemes in Wiretap Channels. IEEE Trans Veh Technol, 2018, 67: 3669-3673 CrossRef Google Scholar

[19] Shu F, Xu L, Wang J. Artificial-Noise-Aided Secure Multicast Precoding for Directional Modulation Systems. IEEE Trans Veh Technol, 2018, 67: 6658-6662 CrossRef Google Scholar

[20] Goel S, Negi R. Guaranteeing Secrecy using Artificial Noise. IEEE Trans Wireless Commun, 2008, 7: 2180-2189 CrossRef Google Scholar

[21] Nguyen N P, Ngo H Q, Duong T Q. Secure Massive MIMO With the Artificial Noise-Aided Downlink Training. IEEE J Sel Areas Commun, 2018, 36: 802-816 CrossRef Google Scholar

[22] Wang B, Mu P C, Yang P Z. Two-step transmission with artificial noise for secure wireless SIMO communications. Sci China Inf Sci, 2015, 58: 1-13 CrossRef Google Scholar

[23] Li B, Fei Z. Probabilistic-constrained robust secure transmission for energy harvesting over MISO channels. Sci China Inf Sci, 2018, 61: 022303 CrossRef Google Scholar

[24] Wang W Q, So H C. Transmit Subaperturing for Range and Angle Estimation in Frequency Diverse Array Radar. IEEE Trans Signal Process, 2014, 62: 2000-2011 CrossRef ADS Google Scholar

[25] Wang W Q. Subarray-based frequency diverse array radar for target range-angle estimation. IEEE Trans Aerosp Electron Syst, 2014, 50: 3057-3067 CrossRef ADS Google Scholar

[26] Xu J, Liao G, Zhu S. Joint Range and Angle Estimation Using MIMO Radar With Frequency Diverse Array. IEEE Trans Signal Process, 2015, 63: 3396-3410 CrossRef ADS Google Scholar

[27] Sammartino P F, Baker C J, Griffiths H D. Frequency Diverse MIMO Techniques for Radar. IEEE Trans Aerosp Electron Syst, 2013, 49: 201-222 CrossRef ADS Google Scholar

[28] Qin S, Zhang Y D, Amin M G. Frequency Diverse Coprime Arrays With Coprime Frequency Offsets for Multitarget Localization. IEEE J Sel Top Signal Process, 2017, 11: 321-335 CrossRef ADS Google Scholar

[29] Khan W, Qureshi I M, Basit A. Range-Bins-Based MIMO Frequency Diverse Array Radar With Logarithmic Frequency Offset. Antennas Wirel Propag Lett, 2016, 15: 885-888 CrossRef ADS Google Scholar

[30] Liao Y, Wang W-q, Shao H. Symmetrical logarithmic frequency diverse array for target imaging. In: Proceedings of 2018 IEEE Radar Conference (RadarConf18), 2018. 39--42. Google Scholar

[31] Basit A, Qureshi I M, Khan W. Cognitive frequency diverse array radar with symmetric non-uniform frequency offset. Sci China Inf Sci, 2016, 59: 102314 CrossRef Google Scholar

[32] Khan W, Qureshi I M. Frequency Diverse Array Radar With Time-Dependent Frequency Offset. Antennas Wirel Propag Lett, 2014, 13: 758-761 CrossRef ADS Google Scholar

[33] Khan W, Qureshi I M, Saeed S. Frequency Diverse Array Radar With Logarithmically Increasing Frequency Offset. Antennas Wirel Propag Lett, 2015, 14: 499-502 CrossRef ADS Google Scholar

[34] Ma Y, Wei P, Zhang H. General Focusing Beamformer for FDA: Mathematical Model and Resolution Analysis. IEEE Trans Antennas Propagat, 2019, 67: 3089-3100 CrossRef ADS Google Scholar

[35] Wang W Q. DM using FDA antenna for secure transmission. 10 CrossRef Google Scholar

[36] Hu J, Yan S, Shu F. Artificial-Noise-Aided Secure Transmission With Directional Modulation Based on Random Frequency Diverse Arrays. IEEE Access, 2017, 5: 1658-1667 CrossRef Google Scholar

[37] Wei X, Xiao Y, Xiao Y, et al. Spatial and directional modulation with random frequency diverse array. In: Proceedings of 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), 2018. 976--979. Google Scholar

[38] Cheng Q, Zhu J, Xie T. Time-Invariant Angle-Range Dependent Directional Modulation Based on Time-Modulated Frequency Diverse Arrays. IEEE Access, 2017, 5: 26279-26290 CrossRef Google Scholar

[39] Ji S, Wang W Q, Chen H. On Physical-Layer Security of FDA Communications Over Rayleigh Fading Channels. IEEE Trans Cogn Commun Netw, 2019, 5: 476-490 CrossRef Google Scholar

[40] Qiu B, Tao M, Wang L. Multi-Beam Directional Modulation Synthesis Scheme Based on Frequency Diverse Array. IEEE TransInformForensic Secur, 2019, 14: 2593-2606 CrossRef Google Scholar

[41] Wang W Q. Retrodirective Frequency Diverse Array Focusing for Wireless Information and Power Transfer. IEEE J Sel Areas Commun, 2019, 37: 61-73 CrossRef Google Scholar

[42] Llombart N, Cooper K B, Dengler R J. Confocal Ellipsoidal Reflector System for a Mechanically Scanned Active Terahertz Imager. IEEE Trans Antennas Propagat, 2010, 58: 1834-1841 CrossRef ADS Google Scholar

[43] Zhang B, Liu W. Positional Modulation Design Based on Multiple Phased Antenna Arrays. IEEE Access, 2019, 7: 33898-33905 CrossRef Google Scholar

[44] Lin J, Li Q, Yang J. Physical-Layer Security for Proximal Legitimate User and Eavesdropper: A Frequency Diverse Array Beamforming Approach. IEEE TransInformForensic Secur, 2018, 13: 671-684 CrossRef Google Scholar

[45] Chen K, Yang S, Chen Y. Accurate Models of Time-Invariant Beampatterns for Frequency Diverse Arrays. IEEE Trans Antennas Propagat, 2019, 67: 3022-3029 CrossRef ADS Google Scholar

[46] Xu Y, Shi X, Li W. Low-Sidelobe Range-Angle Beamforming With FDA Using Multiple Parameter Optimization. IEEE Trans Aerosp Electron Syst, 2019, 55: 2214-2225 CrossRef ADS Google Scholar

[47] Xing C, Ma S, Zhou Y. Matrix-Monotonic Optimization for MIMO Systems. IEEE Trans Signal Process, 2015, 63: 334-348 CrossRef ADS Google Scholar

[48] Xing C, Zhao X, Xu W. A Framework on Hybrid MIMO Transceiver Design Based on Matrix-Monotonic Optimization. IEEE Trans Signal Process, 2019, 67: 3531-3546 CrossRef ADS arXiv Google Scholar

[49] Gong S, Xing C, Chen S. Secure Communications for Dual-Polarized MIMO Systems. IEEE Trans Signal Process, 2017, 65: 4177-4192 CrossRef ADS Google Scholar

[50] Gong S, Xing C, Chen S. Polarization Sensitive Array Based Physical-Layer Security. IEEE Trans Veh Technol, 2018, 67: 3964-3981 CrossRef Google Scholar

[51] Gong S, Xing C, Ma S. Secure Wideband Beamforming Design for Two-Way MIMO Relaying Systems. IEEE Trans Veh Technol, 2019, 68: 3472-3486 CrossRef Google Scholar

[52] Songqi C, Jianping A, Fei Z, et al. Burst frame synchronization in low SNR. In: Proceedings of 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC), 2013. 1284--1287. Google Scholar

[53] Xu H, Wei W, Zhang B. Joint frequency-phase estimation for pilot-limited communication systems: a novel method based on length-variable auto-correlation operator. Sci China Inf Sci, 2019, 62: 169303 CrossRef Google Scholar

[54] Liu Y, Ruan H, Wang L. The Random Frequency Diverse Array: A New Antenna Structure for Uncoupled Direction-Range Indication in Active Sensing. IEEE J Sel Top Signal Process, 2017, 11: 295-308 CrossRef ADS arXiv Google Scholar

[55] Nusenu S Y, Wang W, Ji S. Secure directional modulation using frequency diverse array antenna. In: Proceedings of 2017 IEEE Radar Conference (RadarConf), 2017. 0378--0382. Google Scholar

[56] Re P D H, Podilchak S K, Constantinides C, et al. An active retrodirective antenna element for circularly polarized wireless power transmission. In: Proceedings of 2016 IEEE Wireless Power Transfer Conference (WPTC), 2016. 1--4. Google Scholar

[57] Pon C. Retrodirective array using the heterodyne technique. IEEE Trans Antennas Propagat, 1964, 12: 176-180 CrossRef ADS Google Scholar

[58] Yao A, Wu W, Fang D. Frequency diverse phase-conjugating retrodirective array with simultaneous range-focusing capability for multi-targets. In: Proceedings of 2015 Asia-Pacific Microwave Conference (APMC), 2015. 1--3. Google Scholar

[59] Nusenu S Y, Huaizong S. Green Secure Communication Range-Angle Focusing Quadrature Spatial Modulation Using Frequency Modulated Diverse Retrodirective Array for mmWave Wireless Communications. IEEE Trans Veh Technol, 2019, 68: 6867-6877 CrossRef Google Scholar

[60] Xu Y, Li W, Qin W. The test and evaluation of GPS on-board clock. In: Proceedings of 2013 Joint European Frequency and Time Forum and International Frequency Control Symposium (EFTF/IFC), 2013. 295--298. Google Scholar

[61] Goldsmith A. Wireless Communications. Cambridge: Cambridge University Press, 2005. Google Scholar

[62] DiDomenico L D, Rebeiz G M. Digital communications using self-phased arrays. IEEE Trans Microwave Theor Techn, 2001, 49: 677-684 CrossRef ADS Google Scholar

[63] Yu J, Cali J, Zhao F, et al. A direct digital synthesis based chirp radar transmitter in 0.13 $\mu$m SiGe technology. In: Proceedings of 2013 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), 2013. 41--44. Google Scholar

[64] Kay S M. Fundamentals of Statistical Signal Processing. Upper Saddle River: Prentice Hall PTR, 1993. Google Scholar