logo

SCIENCE CHINA Information Sciences, Volume 63 , Issue 1 : 112205(2020) https://doi.org/10.1007/s11432-019-9934-5

Mean square stability for Markov jump Boolean networks

More info
  • ReceivedMar 7, 2019
  • AcceptedMay 30, 2019
  • PublishedDec 25, 2019

Abstract


References

[1] Kauffman S A. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol, 1969, 22: 437-467 CrossRef Google Scholar

[2] Cheng D, Qi H, Li Z. Analysis and Control of Boolean Networks: a Semi-tensor Product Approach. London: Springer, 2010. Google Scholar

[3] Hochma G, Margaliot M, Fornasini E. Symbolic dynamics of Boolean control networks. Automatica, 2013, 49: 2525-2530 CrossRef Google Scholar

[4] Wang S, Feng J E, Yu Y. Further results on dynamic-algebraic Boolean control networks. Sci China Inf Sci, 2019, 62: 12208 CrossRef Google Scholar

[5] Li F F, Sun J T. Controllability of Boolean control networks with time delays in states. Automatica, 2011, 47: 603-607 CrossRef Google Scholar

[6] Zhong J, Lu J Q, Huang T W. Controllability and Synchronization Analysis of Identical-Hierarchy Mixed-Valued Logical Control Networks.. IEEE Trans Cybern, 2017, 47: 3482-3493 CrossRef PubMed Google Scholar

[7] Li H T, Wang Y Z. On reachability and controllability of switched Boolean control networks. Automatica, 2012, 48: 2917-2922 CrossRef Google Scholar

[8] Zhu Q X, Liu Y, Lu J Q. Observability of Boolean control networks. Sci China Inf Sci, 2018, 61: 092201 CrossRef Google Scholar

[9] Fornasini E, Valcher M E. Observability, Reconstructibility and State Observers of Boolean Control Networks. IEEE Trans Automat Contr, 2013, 58: 1390-1401 CrossRef Google Scholar

[10] Li R, Yang M, Chu T G. State feedback stabilization for probabilistic Boolean networks. Automatica, 2014, 50: 1272-1278 CrossRef Google Scholar

[11] Lu J Q, Li M L, Liu Y. Nonsingularity of Grain-like cascade FSRs via semi-tensor product. Sci China Inf Sci, 2018, 61: 010204 CrossRef Google Scholar

[12] Liu R J, Lu J Q, Liu Y. Delayed Feedback Control for Stabilization of Boolean Control Networks With State Delay.. IEEE Trans Neural Netw Learning Syst, 2017, : 1-6 CrossRef PubMed Google Scholar

[13] Li H, Wang Y, Xie L. Disturbance decoupling control design for switched Boolean control networks. Syst Control Lett, 2014, 72: 1-6 CrossRef Google Scholar

[14] Liu Y, Tong L Y, Lou J G. Sampled-Data Control for the Synchronization of Boolean Control Networks.. IEEE Trans Cybern, 2019, 49: 726-732 CrossRef PubMed Google Scholar

[15] Li F F. Pinning Control Design for the Stabilization of Boolean Networks. IEEE Trans Neural Netw Learning Syst, 2016, 27: 1585-1590 CrossRef Google Scholar

[16] Zhu S, Liu Y, Lou J, et al. Stabilization of logical Boolean networks: an event triggered control approach. Sci China Inf Sci, 2019. doi: 10.1007/s11432-019-9898-3. Google Scholar

[17] Yang M, Chu T G. Evaluation of attractors and basins of asynchronous random Boolean networks. Phys Rev E, 2012, 85: 056105 CrossRef PubMed ADS Google Scholar

[18] Shmulevich I, Dougherty E R, Kim S. Probabilistic Boolean Networks: a rule-based uncertainty model for gene regulatory networks.. Bioinformatics, 2002, 18: 261-274 CrossRef PubMed Google Scholar

[19] Shmulevich I, Dougherty E R, Zhang W. From Boolean to probabilistic Boolean networks as models of genetic regulatory networks. Proc IEEE, 2002, 90: 1778-1792 CrossRef Google Scholar

[20] Meng M, Liu L, Feng G. Stability and $l_1$ Gain Analysis of Boolean Networks With Markovian Jump Parameters. IEEE Trans Automat Contr, 2017, 62: 4222-4228 CrossRef Google Scholar

[21] Liu Y, Chen H W, Lu J Q. Controllability of probabilistic Boolean control networks based on transition probability matrices. Automatica, 2015, 52: 340-345 CrossRef Google Scholar

[22] Guo Y Q, Zhou R P, Wu Y H. Stability and Set Stability in Distribution of Probabilistic Boolean Networks. IEEE Trans Automat Contr, 2018, : 1-1 CrossRef Google Scholar

[23] Liu Y, Wang L Q, Lu J Q. Sampled-data stabilization of probabilistic Boolean control networks. Syst Control Lett, 2019, 124: 106-111 CrossRef Google Scholar

[24] Wu Y H, Shen T L. An algebraic expression of finite horizon optimal control algorithm for stochastic logical dynamical systems. Syst Control Lett, 2015, 82: 108-114 CrossRef Google Scholar

[25] Wu Y H, Shen T L. A Finite Convergence Criterion for the Discounted Optimal Control of Stochastic Logical Networks. IEEE Trans Automat Contr, 2018, 63: 262-268 CrossRef Google Scholar

[26] Possieri C, Teel A R. Asymptotic stability in probability for Stochastic Boolean Networks. Automatica, 2017, 83: 1-9 CrossRef Google Scholar

[27] Kim S, Li H, Dougherty E R. CAN MARKOV CHAIN MODELS MIMIC BIOLOGICAL REGULATION?. J Biol Syst, 2002, 10: 337-357 CrossRef Google Scholar

[28] Sun Y H, Feng G, Cao J D. Stochastic stability of Markovian switching genetic regulatory networks. Phys Lett A, 2009, 373: 1646-1652 CrossRef ADS Google Scholar

[29] Costa O, Fragoso M, Marques R. Discrete-time Markov Jump Linear Systems. London: Springer, 2005. Google Scholar

[30] Li H T, Wang Y Z. Lyapunov-Based Stability and Construction of Lyapunov Functions for Boolean Networks. SIAM J Control Optim, 2017, 55: 3437-3457 CrossRef Google Scholar

[31] Lian J, Liu J, Zhuang Y. Mean Stability of Positive Markov Jump Linear Systems With Homogeneous and Switching Transition Probabilities. IEEE Trans Circuits Syst II, 2015, 62: 801-805 CrossRef Google Scholar

[32] Kobayashi K, Hiraishi K. An integer programming approach to optimal control problems in context-sensitive probabilistic Boolean networks. Automatica, 2011, 47: 1260-1264 CrossRef Google Scholar