SCIENCE CHINA Information Sciences, Volume 63 , Issue 4 : 149301(2020) https://doi.org/10.1007/s11432-019-9871-y

On the parity-check matrix of generalized concatenated code

More info
  • ReceivedFeb 21, 2019
  • AcceptedApr 18, 2019
  • PublishedSep 12, 2019


There is no abstract available for this article.


This work was supported by National Natural Science Foundation of China (Grant Nos. 61771377, 61502376, 61703175), Projects of International Cooperation and Exchanges of Shannxi Province (Grant Nos. 2017KW-003, 2016KW-037), and Fundamental Research Funds for the Central Universities.


Appendixes A and B.


[1] Lin S, Costello D J. Error Control Coding. 2nd ed. Upper Saddle River: Prentice-Hall, 2004. Google Scholar

[2] Dumer I. Concatenated codes and their multilevel generatlizations. In: Handbook of coding Theory. Amsterdam: Elsevier, 1998. 1911--1988. Google Scholar

[3] Lin S J, Al-Naffouri T Y, Han Y S. FFT Algorithm for Binary Extension Finite Fields and Its Application to Reed-Solomon Codes. IEEE Trans Inform Theor, 2016, 62: 5343-5358 CrossRef Google Scholar

[4] Gao J, Wang X F, Shi M J. Gray maps on linear codes over $\mathbb{F}_p[v]/(v^m-v)$ and their applications. Sci Sin Math, 2016, 46: 1329-1336 CrossRef Google Scholar

[5] Maucher J, Zyablov V V, Bossert M. On the equivalence of generalized concatenated codes and generalized error location codes. IEEE Trans Inform Theor, 2000, 46: 642-649 CrossRef Google Scholar

[6] Wardlaw W P. Matrix Representation of Finite Fields. Math Mag, 1994, 67: 289-293 CrossRef Google Scholar

[7] Poulin D. Optimal and efficient decoding of concatenated quantum block codes. Phys Rev A, 2006, 74: 052333 CrossRef ADS Google Scholar

[8] Wang Y J, Zeng B, Grassl M, et al. Stabilzier formalism for generalized concatenated quantum codes. In: Proceedings of IEEE International Symposium on Information Theory, Istanbul, 2013. 529--533. Google Scholar