logo

SCIENCE CHINA Information Sciences, Volume 63 , Issue 2 : 122401(2020) https://doi.org/10.1007/s11432-019-9836-9

Vertical SnS$_{\boldsymbol~2}$/Si heterostructure for tunnel diodes

More info
  • ReceivedJan 23, 2019
  • AcceptedMar 15, 2019
  • PublishedSep 16, 2019

Abstract


Acknowledgment

This work was partly supported by National Natural Science Foundation of China (Grant Nos. 61421005, 61851401, 61822401, 61604006) and the 111 Project (Grant No. B18001).


References

[1] Ionescu A M, Riel H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature, 2011, 479: 329-337 CrossRef PubMed ADS Google Scholar

[2] Sarkar D, Xie X J, Liu W. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature, 2015, 526: 91-95 CrossRef PubMed ADS Google Scholar

[3] Zhao Y, Wu C L, Huang Q Q. A Novel Tunnel FET Design Through Adaptive Bandgap Engineering With Constant Sub-Threshold Slope Over 5 Decades of Current and High $\text{I}_{\mathrm~{ON}}/\text{I}_{\mathrm~{OFF}}$ Ratio. IEEE Electron Device Lett, 2017, 38: 540-543 CrossRef ADS Google Scholar

[4] Dey A W, Borg B M, Ganjipour B. High-Current GaSb/InAs(Sb) Nanowire Tunnel Field-Effect Transistors. IEEE Electron Device Lett, 2013, 34: 211-213 CrossRef ADS Google Scholar

[5] Liu Y, Weiss N O, Duan X D. Van der Waals heterostructures and devices. Nat Rev Mater, 2016, 1: 16042 CrossRef ADS Google Scholar

[6] Roy T, Tosun M, Cao X. Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors.. ACS Nano, 2015, 9: 2071-2079 CrossRef PubMed Google Scholar

[7] Roy T, Tosun M, Hettick M. 2D-2D tunneling field-effect transistors using WSe$_{2}$/SnSe$_{2}$ heterostructures. Appl Phys Lett, 2016, 108: 083111 CrossRef ADS Google Scholar

[8] Xu J, Jia J Y, Lai S. Tunneling field effect transistor integrated with black phosphorus-MoS$_{2}$ junction and ion gel dielectric. Appl Phys Lett, 2017, 110: 033103 CrossRef ADS Google Scholar

[9] Yan X, Liu C S, Li C, et al. Tunable SnSe$_2$/WSe$_2$ heterostructure tunneling field effect transistor. Small, 2017, 1701478. Google Scholar

[10] Li X F, Gao T T, Wu Y Q. Development of two-dimensional materials for electronic applications. Sci China Inf Sci, 2016, 59: 061405 CrossRef Google Scholar

[11] Xie Q, Chen C, Liu M J. Short-channel effects on the static noise margin of 6T SRAM composed of 2D semiconductor MOSFETs. Sci China Inf Sci, 2019, 62: 062404 CrossRef Google Scholar

[12] Krishnamoorthy S, Lee Ii E W, Lee C H. High current density 2D/3D MoS$_{2}$/GaN Esaki tunnel diodes. Appl Phys Lett, 2016, 109: 183505 CrossRef ADS arXiv Google Scholar

[13] Zhang B X, An X, Liu P Q. Improvement of thermal stability of nickel germanide using nitrogen plasma pretreatment for germanium-based technology. Sci China Inf Sci, 2018, 61: 109401 CrossRef Google Scholar

[14] Xu K, Cai Y H, Zhu W J. Esaki Diodes Based on 2-D/3-D Heterojunctions. IEEE Trans Electron Devices, 2018, 65: 4155-4159 CrossRef ADS Google Scholar

[15] McDonnell S, Addou R, Buie C. Defect-dominated doping and contact resistance in MoS2.. ACS Nano, 2014, 8: 2880-2888 CrossRef PubMed Google Scholar

[16] Schlaf R, Lang O, Pettenkofer C. Band lineup of layered semiconductor heterointerfaces prepared by van der Waals epitaxy: Charge transfer correction term for the electron affinity rule. J Appl Phys, 1999, 85: 2732-2753 CrossRef ADS Google Scholar

[17] Fang N, Nagashio K. Accumulation-Mode Two-Dimensional Field-Effect Transistor: Operation Mechanism and Thickness Scaling Rule. ACS Appl Mater Interfaces, 2018, 10: 32355-32364 CrossRef Google Scholar

[18] Jin Y, Keum D H, An S J. A Van Der Waals Homojunction: Ideal p-n Diode Behavior in MoSe2.. Adv Mater, 2015, 27: 5534-5540 CrossRef PubMed Google Scholar

[19] Doan M H, Jin Y, Adhikari S. Charge transport in MoS$_2$/WSe$_2$ van der Waals heterostructure with tunable inversion layer. ACS Nano, 2017, 11: 3832-3840 CrossRef Google Scholar

[20] Bludau W, Onton A, Heinke W. Temperature dependence of the band gap of silicon. J Appl Phys, 1974, 45: 1846-1848 CrossRef ADS Google Scholar

[21] Burton L A, Whittles T J, Hesp D. Electronic and optical properties of single crystal SnS$_2$: an earth-abundant disulfide photocatalyst. J Mater Chem A, 2016, 4: 1312-1318 CrossRef Google Scholar

[22] Huang Q Q, Huang R, Zhan Z, et al. A novel Si Tunnel FET with 36 mV/dec subthreshold slope based on junction depleted-modulation through striped Gate configuration. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), San Francisco, 2012. 187--190. Google Scholar

  • Figure 1

    (Color online) (a) Schematic view of the vertical 2D/3D tunnel diode. Vertical tunneling occurs across the overlap region between the 2D material and the 3D material. (b) Top view of the vertical 2D/3D tunnel diode.

  • Figure 2

    (Color online) The band diagram of the N$^+$ SnS$_2$/P$^+$ Si tunnel diode. (a) The bandgaps and electronic affinities of Si and SnS$_2$; (b) the equilibrium state; (c) the working state-reverse bias region.

  • Figure 3

    (Color online) The details of the process to fabricate the vertical N$^+$ SnS$_2$/P$^+$ Si tunnel diode. (a) The original Si substrate; (b) ion implantation with BF$_2$$^+$; (c) highly p-doped Si; (d) dry etching to form trenches; (e) CVD of SiO$_2$; (f) CMP of SiO$_2$; (g) HF treatment to remove the residual and native oxide; (h) transfer of SnS$_2$ sheet; (i) formation of contacts.

  • Figure 4

    (Color online) (a) The optical microscope image of the fabricated vertical N$^+$ SnS$_2$/P$^+$ Si tunnel diode; protectłinebreak (b) AFM image of fabricated vertical N$^+$ SnS$_2$/P$^+$ Si tunnel diode; (c) Raman characterization of the SnS$_2$ sheet in the tunnel diode.

  • Figure 5

    (Color online) The electric characteristics of the vertical N$^+$ SnS$_2$/P$^+$ Si tunnel diode. (a) Linear and (b) log current-voltage characteristics.

  • Figure 6

    (Color online) The NDR characteristic of the vertical N$^+$ SnS$_2$/P$^+$ Si tunnel diode. (a) The band diagram in the small forward bias region; (b) the band diagram in the large forward bias region.

  • Figure 7

    (Color online) The temperature characteristic of the vertical N$^+$ SnS$_2$/P$^+$ Si tunnel diode.