SCIENCE CHINA Information Sciences, Volume 64 , Issue 8 : 182305(2021) https://doi.org/10.1007/s11432-019-2984-7

Intelligent cluster routing scheme for flying ad hoc networks

More info
  • ReceivedDec 7, 2019
  • AcceptedJul 17, 2020
  • PublishedJun 1, 2021



This work was supported in part by Key Project of National Natural Science Foundation of China (Grant No. 6143100) and Beijing Institute of Technology Research Fund Program for Young Scholars, and Ericsson.


[1] Rong B, Zhang Z, Zhao X. Robust Superimposed Training Designs for MIMO Relaying Systems Under General Power Constraints. IEEE Access, 2019, 7: 80404-80420 CrossRef Google Scholar

[2] Du C, Zhang Z, Wang X. Optimal Duplex Mode Selection for D2D-Aided Underlaying Cellular Networks. IEEE Trans Veh Technol, 2020, 69: 3119-3134 CrossRef Google Scholar

[3] Naqvi S A R, Hassan S A, Pervaiz H. Drone-Aided Communication as a Key Enabler for 5G and Resilient Public Safety Networks. IEEE Commun Mag, 2018, 56: 36-42 CrossRef Google Scholar

[4] Bekmezci , Sahingoz O K, Temel . Flying Ad-Hoc Networks (FANETs): A survey. Ad Hoc Networks, 2013, 11: 1254-1270 CrossRef Google Scholar

[5] Luo S, Zhang Z, Wang S. Network for hypersonic UCAV swarms. Sci China Inf Sci, 2020, 63: 140311 CrossRef Google Scholar

[6] Schneider D. Air traffic control for delivery drones [Top Tech 2017]. IEEE Spectr, 2017, 54: 32-33 CrossRef Google Scholar

[7] Manathara J G, Sujit P B, Beard R W. Multiple UAV Coalitions for a Search and Prosecute Mission. J Intell Robot Syst, 2011, 62: 125-158 CrossRef Google Scholar

[8] Qu Y, Zhang F, Wu X. Cooperative geometric localization for a ground target based on the relative distances by multiple UAVs. Sci China Inf Sci, 2019, 62: 10204 CrossRef Google Scholar

[9] Sun Z, Wang P, Vuran M C. BorderSense: Border patrol through advanced wireless sensor networks. Ad Hoc Networks, 2011, 9: 468-477 CrossRef Google Scholar

[10] Maza I, Caballero F, Capit?n J. Experimental Results in Multi-UAV Coordination for Disaster Management and Civil Security Applications. J Intell Robot Syst, 2011, 61: 563-585 CrossRef Google Scholar

[11] Xiang H, Tian L. Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). BioSyst Eng, 2011, 108: 174-190 CrossRef Google Scholar

[12] Zhao N, Lu W, Sheng M. UAV-Assisted Emergency Networks in Disasters. IEEE Wireless Commun, 2019, 26: 45-51 CrossRef Google Scholar

[13] Jawhar I, Mohamed N, Al-Jaroodi J. Communication and networking of UAV-based systems: Classification and associated architectures. J Network Comput Appl, 2017, 84: 93-108 CrossRef Google Scholar

[14] Zeng Y, Zhang R, Lim T J. Wireless communications with unmanned aerial vehicles: opportunities and challenges. IEEE Commun Mag, 2016, 54: 36-42 CrossRef Google Scholar

[15] Lin L, Sun Q, Li J, et al. A novel geographic position mobility oriented routing strategy for UAVs. J Comput Inf Syst, 2012, 8: 709--716. Google Scholar

[16] Gankhuyag G, Shrestha A P, Yoo S J. Robust and Reliable Predictive Routing Strategy for Flying Ad-Hoc Networks. IEEE Access, 2017, 5: 643-654 CrossRef Google Scholar

[17] Bellur B R, Lewis M G, Templin F L. An ad-hoc network for teams of autonomous vehicles. In: Proceedings of the 1st Annual Symposium Autonomic Intelligence Network System, Los Angeles, 2002. 1--6. Google Scholar

[18] Alshabtat A, Dang L. Low latency routing algorithm for unmanned aerial vehicles ad-hoc networks. World Acad Sci Eng Technol, 2011, 5: 705--711. Google Scholar

[19] Rosati S, Kru.zelecki K, Traynard L, et al. Speed-aware routing for UAV ad-hoc networks. In: Proceedings of IEEE Globecom Workshops (GC Wkshps), 2013. 1367--1373. Google Scholar

[20] Zheng Y, Wang Y, Li Z, et al. A mobility and load aware OLSR routing protocol for UAV mobile ad-hoc networks. In: Proceedings of International Conference on Information and Communications Technologies (ICT 2014), 2014. 1--7. Google Scholar

[21] Zang C, Zang S. Mobility prediction clustering algorithm for UAV networking. In: Proceedings of the GLOBECOM Workshops (GC Wkshps), Houston, 2011. 1158--1161. Google Scholar

[22] - N S, - X L. A Novel Cluster-Based Location-Aided Routing Protocol for UAV Fleet Networks. JDCTA, 2012, 6: 376-383 CrossRef Google Scholar

[23] Khelifi F, Bradai A, Singh K. Localization and Energy-Efficient Data Routing for Unmanned Aerial Vehicles: Fuzzy-Logic-Based Approach. IEEE Commun Mag, 2018, 56: 129-133 CrossRef Google Scholar

[24] Zafar W, Khan B M. A reliable, delay bounded and less complex communication protocol for multicluster FANETs. Digital Commun Networks, 2017, 3: 30-38 CrossRef Google Scholar

[25] You X, Zhang C, Tan X. AI for 5G: research directions and paradigms. Sci China Inf Sci, 2019, 62: 021301 CrossRef Google Scholar

[26] Zhang Z, Long K, Wang J. Self-organization paradigms and optimization approaches for cognitive radio technologies: a survey. IEEE Wireless Commun, 2013, 20: 36-42 CrossRef Google Scholar

[27] Zhongshan Zhang , Keping Long , Jianping Wang . On Swarm Intelligence Inspired Self-Organized Networking: Its Bionic Mechanisms, Designing Principles and Optimization Approaches. IEEE Commun Surv Tutorials, 2014, 16: 513-537 CrossRef Google Scholar

[28] Yu Y, Ru L, Fang K. Bio-inspired mobility prediction clustering algorithm for ad hoc UAV networks. Eng Lett, 2016, 24: 83--92. Google Scholar

[29] Maistrenko V A, Alexey L V. Experimental estimate of using the ant colony optimization algorithm to solve the routing problem in FANET. In: Proceedings of International Siberian Conference on Control and Communications (SIBCON), 2016. 1--10. Google Scholar

[30] Yang J, Wang X, Li Z, et al. Path planning of unmanned aerial vehicles for farmland information monitoring based on WSN. In: Proceedings of the 12th World Congrress Intelligence Control Automat (WCICA), 2016. 2834--2838. Google Scholar

[31] El Houda Bahloul N, Boudjit S, Abdennebi M. A Flocking-Based on Demand Routing Protocol for Unmanned Aerial Vehicles. J Comput Sci Technol, 2018, 33: 263-276 CrossRef Google Scholar

[32] Khan A, Aftab F, Zhang Z. BICSF: Bio-Inspired Clustering Scheme for FANETs. IEEE Access, 2019, 7: 31446-31456 CrossRef Google Scholar

[33] Khan A, Aftab F, Zhang Z. Self-organization based clustering scheme for FANETs using Glowworm Swarm Optimization. Phys Communication, 2019, 36: 100769 CrossRef Google Scholar

[34] Mirjalili S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-Based Syst, 2015, 89: 228-249 CrossRef Google Scholar

[35] Roy R R. Reference point group mobility. In: Handbook of Mobile Ad Hoc Networks for Mobility Models. Boston: Springer, 2011. 637--670. Google Scholar

  • Figure 1

    (Color online) System model.

  • Figure 2

    (Color online) Moth flame optimization mechanism. (a) Transverse orientation; (b) spiral flying path.

  • Figure 3

    (Color online) (a) Cluster routing scheme for flying ad hoc network cluster formation, (b) cluster routing scheme for flying ad hoc network cluster management.

  • Figure 4

    (Color online) (a) Cluster head re-selection for cluster maintenance, (b) cluster routing scheme for flying ad hoc network routing mechanism

  • Figure 11

    (Color online) Number of UAVs vs. packet delivery ratio.

  • Table 1  

    Table 1Notation

    Notation Explanation Notation Explanation
    ${R_{E}(i)}$ textResidual energy of i-th UAV ${{\rm~CJ}_{\rm~message}}$ textCluster joining message
    ${I_{E}(i)}$ textInitial energy of i-th UAV ${{\rm~CT}_{\rm~table}}$ textCluster topology table
    ${C_{E}(i)}$ textCurrent energy of i-th UAV ${{\rm~TC}_{\rm~message}}$ textTopology configuration message
    ${H_M}$ textHello message ${C_{\rm~message}}$ textConfirmation message
    ${N_{\rm~table}}$ textNeighbor table ${D_{CH,CM}}$ textDistance between CH UAV and CM UAV
    ${\rm~NUAV}$ textNumber of neighboring UAV ${\rm~CH~\:~UAV}$ textCluster head UAV
    ${T_{\rm~NUAV}}$ textThreshold number of neighboring UAV ${\rm~CM~\:~UAV}$ textCluster member UAV
    ${{\rm~CF}_{\rm~message}}$ textCluster formation message ED textEuclidean distance

    Algorithm 1 CSRF cluster formation

    $\textbf{Input:}$ $R_E~(i),~M_i$;

    $\textbf{Output:}$ Formation of cluster;

    $\textbf{For}$ each UAV ${i}$ in a network ($i~=~1,~2,~3,~\ldots,~N$;

    $\textbf{Calculate}$ Fitness; : (using (14));

    $\textbf{Do}$ (Transmit Fitness with $H_M$);

    While (UAV ${i}$ receives $H_M$)

    $\textbf{Construct}$ ($N_{\rm~table}$);

    $\textbf{Compare}$ (Fitness;

    $\textbf{Sort}~(N_{\rm~table}$ entries in descending order);

    $\textbf{Update}~(N_{\rm~table}$ on every new $H_M$);

    $\textbf{While}$ (NUAV $\geqslant$ $T_{\rm~NUAV}$);

    $\textbf{Check}$ (Fitness information of UAV ${i}$ from $N_{\rm~table}$);

    $\textbf{if}$ (UAV ${i}$ has highest Fitness;

    $\textbf{Declare}$ (UAV ${i}$ as CH);

    $\textbf{Transmit}$ (${\rm~CF}_{\rm~message}$ to UAVs in $N_{\rm~table}$);


    $\textbf{Wait~for}$ (${\rm~CF}_{\rm~message}$);

    $\textbf{if}$ (UAV ${i}$ receives ${\rm~CF}_{\rm~message}$);

    $\textbf{Recognize}$ (UAV as CH);

    $\textbf{Transmit}$ (${\rm~CJ}_{\rm~message}$ to CH UAV);

    $\textbf{While}$ (CH UAV receives ${\rm~CJ}_{\rm~message}$);

    $\textbf{Recognize}$ (UAV ${i}$ as CM UAV);

    $\textbf{Construct}$ (${\rm~CT}_{\rm~table}$);

    $\textbf{Transmit}$ (${\rm~CT}_{\rm~table}$ to CM UAVs);



    Algorithm 2 CSRF cluster management

    Input: $M_i$;

    Output: Update cluster topology;

    Every UAV do;

    Transmit (${\rm~TC}_{\rm~message}$);

    While (CH UAV receives ${\rm~TC}_{\rm~message}$);

    Calculate ($D_{\rm~CH,CM}$ of CM UAV based on the position from ${\rm~TC}_{\rm~message}$);

    Assign (ID to the CM UAV based on calculated distance);

    Update ($M_i$ in ${\rm~CT}_{\rm~table}$);

    Transmit (${\rm~CT}_{\rm~table}$ with $C_{\rm~message}$);


  • Table 2  

    Table 2Simulation parameters

    Parameter Value
    textGrid size 1 km ${\times}$ 1 km and 2 km ${\times}$ 2 km
    textNumber of UAVs $15,~20,~25,~30,~35$
    textMinimum distance between UAVs 5 m
    textMobility model textReference point mobility model [35]
    textSimulation time 120 s
    textPosition exchange interval 2 s
    $w_1$ and $w_2$ 0.5 and 0.5
    textUAV's initial energy level 80: Watt hour
    textData packet 512 bytes
    textConstant bit rate 100 kbps
    textReceiver sensitivity $-$90 dBm
    textTransmission range Dynamic
    textTransmission frequency 2.45 GHz

Contact and support