More info
  • ReceivedNov 29, 2019
  • AcceptedMar 28, 2020
  • PublishedMay 26, 2020



This work was supported by National Institute on Alcohol Abuse and Alcoholism (Grant No. Y1AA-3009). We thank Yang HU for his valuable support in text formatting and reference management.


[1] American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th ed. Arlington: APA, 2013. Google Scholar

[2] Griswold M G, Fullman N, Hawley C. Alcohol use and burden for 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet, 2018, 392: 1015-1035 CrossRef Google Scholar

[3] Brust J. Ethanol and cognition: indirect effects, neurotoxicity and neuroprotection: a review.. IJERPH, 2010, 7: 1540-1557 CrossRef PubMed Google Scholar

[4] Crews F T, Lawrimore C J, Walter T J. The role of neuroimmune signaling in alcoholism.. Neuropharmacology, 2017, 122: 56-73 CrossRef PubMed Google Scholar

[5] Kohno M, Link J, Dennis L E. Neuroinflammation in addiction: A review of neuroimaging studies and potential immunotherapies.. Pharmacol Biochem Behav, 2019, 179: 34-42 CrossRef PubMed Google Scholar

[6] Stavro K, Pelletier J, Potvin S. Widespread and sustained cognitive deficits in alcoholism: a meta-analysis. Addiction Biol, 2013, 18: 203-213 CrossRef Google Scholar

[7] Gupta, S., Warner, J. Alcohol-related dementia: a 21st-century silent epidemic? British Journal of Psychiatry, 2008, 193(5), 351-353. Google Scholar

[8] Davies, S. J., Pandit, S. A., Feeney, A., Stevenson, B. J., Kerwin, R. W., Nutt, D. J., Lingford-Hughes, A. Is there cognitive impairment in clinically 'healthy' abstinent alcohol dependence? Alcohol and Alcoholism, 2005, 40(6), 498-503. Google Scholar

[9] Coleman Jr L G, Zou J, Crews F T. Microglial-derived miRNA let-7 and HMGB1 contribute to ethanol-induced neurotoxicity via TLR7.. J Neuroinflammation, 2017, 14: 22 CrossRef PubMed Google Scholar

[10] Kane C J M, Drew P D. Inflammatory responses to alcohol in the CNS: nuclear receptors as potential therapeutics for alcohol-induced neuropathologies.. J Leukoc Biol, 2016, 100: 951-959 CrossRef PubMed Google Scholar

[11] Tiwari V, Chopra K. Protective effect of curcumin against chronic alcohol-induced cognitive deficits and neuroinflammation in the adult rat brain.. Neuroscience, 2013, 244: 147-158 CrossRef PubMed Google Scholar

[12] Robinson G M, Orrego H, Israel Y. Low-molecular-weight polyethylene glycol as a probe of gastrointestinal permeability after alcohol ingestion.. Digest Dis Sci, 1981, 26: 971-977 CrossRef PubMed Google Scholar

[13] Bjarnason I, Ward K, Peters T J. THE LEAKY GUT OF ALCOHOLISM: POSSIBLE ROUTE OF ENTRY FOR TOXIC COMPOUNDS. Lancet, 1984, 323: 179-182 CrossRef Google Scholar

[14] Keshavarzían, A. F., Jeremy Z., Vaeth, J., Holmes, E.W. The differing effects of acute and chronic alcohol on gastric and intestinal permeability. American Journal of Gastroenterology, 1994, 89(12), 2205-2211. Google Scholar

[15] Leclercq S, Cani P D, Neyrinck A M. Role of intestinal permeability and inflammation in the biological and behavioral control of alcohol-dependent subjects.. Brain Behav Immun, 2012, 26: 911-918 CrossRef PubMed Google Scholar

[16] Ellis, F. W. (1966). Effect of ethanol on plasma corticosterone levels. Journal of Pharmacology and Experimental Therapeutics, 153(1). Google Scholar

[17] Frank M G, Miguel Z D, Watkins L R. Prior exposure to glucocorticoids sensitizes the neuroinflammatory and peripheral inflammatory responses to E. coli lipopolysaccharide.. Brain Behav Immun, 2010, 24: 19-30 CrossRef PubMed Google Scholar

[18] Woodcock E A, Hillmer A T, Mason G F. Imaging Biomarkers of the Neuroimmune System among Substance Use Disorders: A Systematic Review.. Mol Neuropsychiatry, 2019, 5: 125-146 CrossRef PubMed Google Scholar

[19] Tyler, R. E., Kim, S. W., Guo, M., Jang, Y. J., Damadzic, R., Stodden, T., Volkow, N. D. Detecting neuroinflammation in the brain following chronic alcohol exposure in rats: A comparison between in vivo and in vitro TSPO radioligand binding. European Journal of Neuroscience, 2019, 50(1), 1831-1842. Google Scholar

[20] Saba W, Goutal S, Auvity S. Imaging the neuroimmune response to alcohol exposure in adolescent baboons: a TSPO PET study using (18) F-DPA-714. Addiction Biol, 2018, 23: 1000-1009 CrossRef PubMed Google Scholar

[21] Hillmer A T, Sandiego C M, Hannestad J. In vivo imaging of translocator protein, a marker of activated microglia, in alcohol dependence.. Mol Psychiatry, 2017, 22: 1759-1766 CrossRef PubMed Google Scholar

[22] Kalk N J, Guo Q, Owen D. Decreased hippocampal translocator protein (18 kDa) expression in alcohol dependence: a PBR28 PET study. Transl Psychiatry, 2017, 7: e996-e996 CrossRef PubMed Google Scholar

[23] Kim S W, Wiers C E, Tyler R. Influence of alcoholism and cholesterol on TSPO binding in brain: PET PBR28 studies in humans and rodents. Neuropsychopharmacol, 2018, 43: 1832-1839 CrossRef PubMed Google Scholar

[24] Gundersen, H., van Wageningen, H., Grüner, R. Alcohol-induced changes in cerebral blood flow and cerebral blood volume in social drinkers. Alcohol and Alcoholism, 2012, 48(2), 160-165. Google Scholar

[25] Ende, G., Hermann, D., Demirakca, T., Hoerst, M., Tunc-Skarka, N., Weber-Fahr, W., Vollst?dt-Klein, S. Loss of control of alcohol use and severity of alcohol dependence in non-treatment-seeking heavy drinkers are related to lower glutamate in frontal white matter. Alcoholism: Clinical and Experimental Research, 2013, 37(10), 1643-1649. Google Scholar

[26] Cheng H, Kellar D, Lake A. Effects of Alcohol Cues on MRS Glutamate Levels in the Anterior Cingulate. Alcohol Alcoholism, 2018, 53: 209-215 CrossRef Google Scholar

[27] Bagga D, Khushu S, Modi S. Impaired visual information processing in alcohol-dependent subjects: a proton magnetic resonance spectroscopy study of the primary visual cortex.. J Stud Alcohol Drugs, 2014, 75: 817-826 CrossRef PubMed Google Scholar

[28] Mon A, Durazzo T C, Meyerhoff D J. Glutamate, GABA, and other cortical metabolite concentrations during early abstinence from alcohol and their associations with neurocognitive changes.. Drug Alcohol Dependence, 2012, 125: 27-36 CrossRef PubMed Google Scholar

[29] Thoma R, Mullins P, Ruhl D. Perturbation of the glutamate-glutamine system in alcohol dependence and remission.. Neuropsychopharmacol, 2011, 36: 1359-1365 CrossRef PubMed Google Scholar

[30] Valenta J P, Gonzales R A. Chronic Intracerebroventricular Infusion of Monocyte Chemoattractant Protein-1 Leads to a Persistent Increase in Sweetened Ethanol Consumption During Operant Self-Administration But Does Not Influence Sucrose Consumption in Long-Evans Rats.. Alcohol Clin Exp Res, 2016, 40: 187-195 CrossRef PubMed Google Scholar

[31] Hermann D, Weber-Fahr W, Sartorius A. Translational magnetic resonance spectroscopy reveals excessive central glutamate levels during alcohol withdrawal in humans and rats.. Biol Psychiatry, 2012, 71: 1015-1021 CrossRef PubMed Google Scholar

[32] Zahr N M, Mayer D, Rohlfing T. Imaging neuroinflammation? A perspective from MR spectroscopy.. Brain Pathol, 2014, 24: 654-664 CrossRef PubMed Google Scholar

[33] Meyerhoff D J, Blumenfeld R, Truran D. Effects of heavy drinking, binge drinking, and family history of alcoholism on regional brain metabolites.. Alcoholism-Clin Exp Res, 2004, 28: 650-661 CrossRef PubMed Google Scholar

[34] Schweinsburg B C, Taylor M J, Alhassoon O M. Chemical Pathology in Brain White Matter of Recently Detoxified Alcoholics: A 1H Magnetic Resonance Spectroscopy Investigation of Alcohol-Associated Frontal Lobe Injury. Alcoholism Clin Exp Res, 2001, 25: 924-934 CrossRef Google Scholar

[35] Quarantelli M. MRI/MRS in neuroinflammation: methodology and applications.. Clin Transl Imag, 2015, 3: 475-489 CrossRef PubMed Google Scholar

[36] Bendszus, M., Weijers, H. G., Wiesbeck, G., Warmuth-Metz, M., Bartsch, A. J., Engels, S., Solymosi, L. Sequential MR imaging and proton MR spectroscopy in patients who underwent recent detoxification for chronic alcoholism: correlation with clinical and neuropsychological data. American Journal of Neuroradiology, 2001, 22(10), 1926-1932. Google Scholar

[37] Parks M H, Dawant B M, Riddle W R. Longitudinal Brain Metabolic Characterization of Chronic Alcoholics With Proton Magnetic Resonance Spectroscopy. Alcoholism Clin Exp Res, 2002, 26: 1368-1380 CrossRef Google Scholar

[38] de Souza, R. S. M., Rosa, M., Rodrigues, T. M., Escobar, T. D. C., Gasparetto, E. L., Nakamura-Palacios, E. M. Lower choline rate in the left prefrontal cortex is associated with higher amount of alcohol use in alcohol use disorder. Frontiers in Psychiatry, 2018, 9(563). Google Scholar

[39] Ende G, Welzel H, Walter S. Monitoring the effects of chronic alcohol consumption and abstinence on brain metabolism: a longitudinal proton magnetic resonance spectroscopy study.. Biol Psychiatry, 2005, 58: 974-980 CrossRef PubMed Google Scholar

[40] Haorah J, Schall K, Ramirez S H. Activation of protein tyrosine kinases and matrix metalloproteinases causes blood-brain barrier injury: Novel mechanism for neurodegeneration associated with alcohol abuse.. Glia, 2008, 56: 78-88 CrossRef PubMed Google Scholar

[41] Monnig M A, Caprihan A, Yeo R A. Diffusion tensor imaging of white matter networks in individuals with current and remitted alcohol use disorders and comorbid conditions.. Psychology Addictive Behavs, 2013, 27: 455-465 CrossRef PubMed Google Scholar

[42] Volkow N D, Kim S W, Wang G J. Acute alcohol intoxication decreases glucose metabolism but increases acetate uptake in the human brain.. Neuroimage, 2013, 64: 277-283 CrossRef PubMed Google Scholar

[43] Tanabe J, Yamamoto D J, Sutton B. Effects of Alcohol and Acetate on Cerebral Blood Flow: A Pilot Study.. Alcohol Clin Exp Res, 2019, 43: 2070-2078 CrossRef PubMed Google Scholar

[44] Courtney K E, Infante M A, Brown G G. The Relationship Between Regional Cerebral Blood Flow Estimates and Alcohol Problems at 5-Year Follow-Up: The Role of Level of Response.. Alcohol Clin Exp Re, 2019, 43: 812-821 CrossRef PubMed Google Scholar

[45] Brand A, Richter-Landsberg C, Leibfritz D. Multinuclear NMR studies on the energy metabolism of glial and neuronal cells.. Dev Neurosci, 1993, 15: 289-298 CrossRef PubMed Google Scholar

[46] Chang L, Munsaka S M, Kraft-Terry S. Magnetic resonance spectroscopy to assess neuroinflammation and neuropathic pain.. J Neuroimmune Pharmacol, 2013, 8: 576-593 CrossRef PubMed Google Scholar

[47] Meyerhoff, D. J. Effects of alcohol and HIV infection on the central nervous system. Alcohol Research & Health, 2001, 25(4), 288-298. Google Scholar

[48] Fawcett J W, Asher R A. The glial scar and central nervous system repair. Brain Res Bull, 1999, 49: 377-391 CrossRef Google Scholar

[49] Hoogland I C M, Houbolt C, van Westerloo D J. Systemic inflammation and microglial activation: systematic review of animal experiments.. J Neuroinflammation, 2015, 12: 114 CrossRef PubMed Google Scholar

[50] Perry V H. The influence of systemic inflammation on inflammation in the brain: implications for chronic neurodegenerative disease.. Brain Behav Immun, 2004, 18: 407-413 CrossRef PubMed Google Scholar

[51] Tang Y, Le W. Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases.. Mol Neurobiol, 2016, 53: 1181-1194 CrossRef PubMed Google Scholar

[52] Block M L, Zecca L, Hong J S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms.. Nat Rev Neurosci, 2007, 8: 57-69 CrossRef PubMed Google Scholar

[53] Yawata I, Takeuchi H, Doi Y. Macrophage-induced neurotoxicity is mediated by glutamate and attenuated by glutaminase inhibitors and gap junction inhibitors.. Life Sci, 2008, 82: 1111-1116 CrossRef PubMed Google Scholar

[54] Freeman, K., Brureau, A., Vadigepalli, R., Staehle, M. M., Brureau, M. M., Gonye, G. E., Schwaber, J. S. Temporal changes in innate immune signals in a rat model of alcohol withdrawal in emotional and cardiorespiratory homeostatic nuclei. Journal of Neuroinflammation, 2012, 9(1), 97. Google Scholar

[55] Sweet, M. J., Hume, D. A. Endotoxin signal transduction in macrophages. Journal of Leukocyte Biology, 1996, 60(1), 8-26. Google Scholar

[56] Breese G R, Knapp D J, Overstreet D H. Repeated lipopolysaccharide (LPS) or cytokine treatments sensitize ethanol withdrawal-induced anxiety-like behavior.. Neuropsychopharmacol, 2008, 33: 867-876 CrossRef PubMed Google Scholar

[57] Heberlein, A., Kaser, M., Lichtinghagen, R., Rhein, M., Lenz, B., Kornhuber, J., Hillemacher, T. TNF-alpha and IL-6 serum levels: Neurobiological markers of alcohol consumption in alcohol-dependent patients? Alcohol, 2014, 48(7), 671-676. Google Scholar

[58] Leclercq S, De Saeger C, Delzenne N. Role of inflammatory pathways, blood mononuclear cells, and gut-derived bacterial products in alcohol dependence.. Biol Psychiatry, 2014, 76: 725-733 CrossRef PubMed Google Scholar

[59] Nishiyama, A., Komitova, M., Suzuki, R., Zhu, X. Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nature Reviews Neuroscience, 2009, 10(1), 9-22. Google Scholar

[60] Harper C. The neuropathology of alcohol-related brain damage.. Alcohol Alcoholism, 2009, 44: 136-140 CrossRef PubMed Google Scholar

[61] Gallucci M, Amicarelli I, Rossi A. MR imaging of white matter lesions in uncomplicated chronic alcoholism.. J Comput Assisted Tomography, 1989, 13: 395-398 CrossRef PubMed Google Scholar

[62] He J, Overstreet D H, Crews F T. Abstinence from moderate alcohol self-administration alters progenitor cell proliferation and differentiation in multiple brain regions of male and female P rats.. Alcoholism-Clin Exp Res, 2009, 33: 129-138 CrossRef PubMed Google Scholar

[63] Helfer J L, Calizo L H, Dong W K. Binge-like postnatal alcohol exposure triggers cortical gliogenesis in adolescent rats.. J Comp Neurol, 2009, 514: 259-271 CrossRef PubMed Google Scholar

[64] Albrecht D S, Granziera C, Hooker J M. In Vivo Imaging of Human Neuroinflammation.. ACS Chem Neurosci, 2016, 7: 470-483 CrossRef PubMed Google Scholar

[65] Colombo E, Farina C. Astrocytes: Key Regulators of Neuroinflammation.. Trends Immunol, 2016, 37: 608-620 CrossRef PubMed Google Scholar

[66] Adermark L, Bowers M S. Disentangling the Role of Astrocytes in Alcohol Use Disorder.. Alcohol Clin Exp Res, 2016, 40: 1802-1816 CrossRef PubMed Google Scholar

[67] Blanco A M, Vallés S L, Pascual M. Involvement of TLR4/Type I IL-1 Receptor Signaling in the Induction of Inflammatory Mediators and Cell Death Induced by Ethanol in Cultured Astrocytes. J Immunol, 2005, 175: 6893-6899 CrossRef Google Scholar

[68] Bull C, Freitas K C, Zou S. Rat nucleus accumbens core astrocytes modulate reward and the motivation to self-administer ethanol after abstinence.. Neuropsychopharmacol, 2014, 39: 2835-2845 CrossRef PubMed Google Scholar

[69] Korbo, L. Glial cell loss in the hippocampus of alcoholics. Alcoholism: Clinical & Experimental Research, 1999, 23(1), 164-168. Google Scholar

[70] Miguel-Hidalgo J J, Overholser J C, Meltzer H Y. Reduced glial and neuronal packing density in the orbitofrontal cortex in alcohol dependence and its relationship with suicide and duration of alcohol dependence.. Alcoholism Clin Exp Res, 2006, 30: 1845-1855 CrossRef PubMed Google Scholar

[71] Miguel-Hidalgo, J. J., Overholser, J. C., Meltzer, H. Y., Stockmeier, C. A., Rajkowska, G. Glia pathology in the prefrontal cortex in alcohol dependence with and without depressive symptoms. Alcoholism: Clinical and Experimental Research, 2002, 30(11), 1845-1855. Google Scholar

[72] Chen, M. K., Guilarte, T. R. Translocator protein 18 kDa (TSPO): Molecular sensor of brain injury and repair. Pharmacology & Therapeutics, 2008, 118(1), 1-17. Google Scholar

[73] Gulyás B, Makkai B, Kása P. A comparative autoradiography study in post mortem whole hemisphere human brain slices taken from Alzheimer patients and age-matched controls using two radiolabelled DAA1106 analogues with high affinity to the peripheral benzodiazepine receptor (PBR) system.. NeuroChem Int, 2009, 54: 28-36 CrossRef PubMed Google Scholar

[74] Marshall S A, McClain J A, Kelso M L. Microglial activation is not equivalent to neuroinflammation in alcohol-induced neurodegeneration: The importance of microglia phenotype.. NeuroBiol Dis, 2013, 54: 239-251 CrossRef PubMed Google Scholar

[75] Kreisl, W. C., Jenko, K. J., Hines, C. S., Lyoo, C. H., Corona, W., Morse, C. L., McMahon, F. J. A genetic polymorphism for translocator protein 18 kDa affects both in vitro and in vivo radioligand binding in human brain to this putative biomarker of neuroinflammation. Journal of Cerebral Blood Flow & Metabolism, 2013, 33(1), 53-58. Google Scholar

[76] Gavish, M., Veenman, L. Regulation of mitochondrial, cellular, and organismal functions by TSPO. Advanced Pharmacology, 2018, 82, 103-136. Google Scholar

[77] Jaipuria G, Leonov A, Giller K. Cholesterol-mediated allosteric regulation of the mitochondrial translocator protein structure.. Nat Commun, 2017, 8: 14893 CrossRef PubMed Google Scholar

[78] Brien, S. E., Ronksley, P. E., Turner, B. J., Mukamal, K. J., Ghali, W. A. Effect of alcohol consumption on biological markers associated with risk of coronary heart disease: systematic review and meta-analysis of interventional studies. The Biomedical Journal, 2011, 342, d636. Google Scholar

[79] Kahl K G, Greggersen W, Schweiger U. Prevalence of the metabolic syndrome in men and women with alcohol dependence: results from a cross-sectional study during behavioural treatment in a controlled environment.. Addiction, 2010, 105: 1921-1927 CrossRef PubMed Google Scholar

[80] Owen D R, Fan J, Campioli E. TSPO mutations in rats and a human polymorphism impair the rate of steroid synthesis. Biochem J, 2017, 474: 3985-3999 CrossRef PubMed Google Scholar

[81] Wiers, C. E., Martins De Carvalho, L., Hodgkinson, C. A., Schwandt, M., Kim, S. W., Diazgranados, N., Volkow, N. D. TSPO polymorphism in individuals with alcohol use disorder: Association with cholesterol levels and withdrawal severity. Addiction Biology, 2019. e12838. Google Scholar

[82] Ikawa M, Lohith T G, Shrestha S. 11C-ER176, a Radioligand for 18-kDa Translocator Protein, Has Adequate Sensitivity to Robustly Image All Three Affinity Genotypes in Human Brain.. J Nucl Med, 2017, 58: 320-325 CrossRef PubMed Google Scholar

[83] Chakraborty, S., Bhattacharyya, R., Banerjee, D. Infections: A possible risk factor for Type 2 Diabetes. In Advances in Clinical Chemistry, 2017, 80, 227-251 Elsevier. Google Scholar

[84] Harrison N A, Cooper E, Dowell N G. Quantitative Magnetization Transfer Imaging as a Biomarker for Effects of Systemic Inflammation on the Brain.. Biol Psychiatry, 2015, 78: 49-57 CrossRef PubMed Google Scholar

[85] He J, Crews F T. Increased MCP-1 and microglia in various regions of the human alcoholic brain.. Exp Neurology, 2008, 210: 349-358 CrossRef PubMed Google Scholar

[86] Coleman Jr L G, Zou J, Qin L. HMGB1/IL-1β complexes regulate neuroimmune responses in alcoholism.. Brain Behav Immun, 2018, 72: 61-77 CrossRef PubMed Google Scholar

[87] Crews, F. T., Vetreno, R. P. Neuroimmune basis of alcoholic brain damage. International Review of Neurobiology, 2014, 118: 315-357). Academic Press. Google Scholar

[88] Neupane, S. P., Skulberg, A., Skulberg, K. R., Aass, H. C. D., Bramness, J. G. Cytokine changes following acute ethanol intoxication in healthy men: A crossover study. Mediators of Inflammation, 2016. 2016, 1-7. Google Scholar

[89] Serres, S., Anthony, D.C., Jiang, Y., Broom, K.A., Campbell, S.J., Tyler, D.J. Sibson, N.R. Systemic inflammatory response reactivates immune-mediated lesions in rat brain. Journal of Neuroscience, 2009, 29(15) 4820-4828. Google Scholar

[90] Sankar S B, Pybus A F, Liew A. Low cerebral blood flow is a non-invasive biomarker of neuroinflammation after repetitive mild traumatic brain injury.. NeuroBiol Dis, 2019, 124: 544-554 CrossRef PubMed Google Scholar

[91] Haroon E, Miller A H, Sanacora G. Inflammation, Glutamate, and Glia: A Trio of Trouble in Mood Disorders.. Neuropsychopharmacol, 2017, 42: 193-215 CrossRef PubMed Google Scholar

[92] Bauer J, Pedersen A, Scherbaum N. Craving in alcohol-dependent patients after detoxification is related to glutamatergic dysfunction in the nucleus accumbens and the anterior cingulate cortex.. Neuropsychopharmacol, 2013, 38: 1401-1408 CrossRef PubMed Google Scholar

[93] De Witte P. Imbalance between neuroexcitatory and neuroinhibitory amino acids causes craving for ethanol.. Addictive Behavs, 2004, 29: 1325-1339 CrossRef PubMed Google Scholar

[94] Lee E, Jang D P, Kim J J. Alteration of brain metabolites in young alcoholics without structural changes.. NeuroReport, 2007, 18: 1511-1514 CrossRef PubMed Google Scholar

[95] Licata S C, Renshaw P F. Neurochemistry of drug action: insights from proton magnetic resonance spectroscopic imaging and their relevance to addiction.. Ann New York Acad Sci, 2010, 1187: 148-171 CrossRef PubMed Google Scholar

[96] Ramadan S, Lin A, Stanwell P. Glutamate and glutamine: a review of in vivo MRS in the human brain.. NMR Biomed, 2013, 26: 1630-1646 CrossRef PubMed Google Scholar

[97] Umhau, J. C., Momenan, R., Schwandt, M. L., Singley, E., Lifshitz, M., Doty, L., Heilig, M. Effect of acamprosate on magnetic resonance spectroscopy measures of central glutamate in detoxified alcohol-dependent individuals: A randomized controlled experimental medicine study. JAMA Psychiatry, 2010, 67(10), 1069-1077. Google Scholar

[98] Yeo R A, Thoma R J, Gasparovic C. Neurometabolite concentration and clinical features of chronic alcohol use: a proton magnetic resonance spectroscopy study.. Psychiatry Res-NeuroImag, 2013, 211: 141-147 CrossRef PubMed Google Scholar

[99] Chang L, Ernst T, Poland R E. In vivo proton magnetic resonance spectroscopy of the normal aging human brain. Life Sci, 1996, 58: 2049-2056 CrossRef Google Scholar

[100] Chang L, Ernst T, Witt M D. Relationships among brain metabolites, cognitive function, and viral loads in antiretroviral-na?ve HIV patients.. NeuroImage, 2002, 17: 1638-1648 CrossRef PubMed Google Scholar

[101] Schneider Jr R, Bandiera S, Souza D G. N-acetylcysteine Prevents Alcohol Related Neuroinflammation in Rats.. Neurochem Res, 2017, 42: 2135-2141 CrossRef PubMed Google Scholar

[102] Myo-inositol and related metabolites. NMR in Biomedicine, 1991, 4(2), 59-63. Google Scholar

[103] Schweinsburg B C, Taylor M J, Videen J S. Elevated myo-Inositol in Gray Matter of Recently Detoxified but Not Long-Term Abstinent Alcoholics: A Preliminary MR Spectroscopy Study. Alcoholism Clin Exp Res, 2000, 24: 699-705 CrossRef Google Scholar

[104] de Groot, N. S., Burgas, M. T. Is membrane homeostasis the missing link between inflammation and neurodegenerative diseases? Cellular and Molecular Life Sciences, 2015, 72(24), 4795-4805. Google Scholar

[105] Chang L, Ernst T, Leonido-Yee M. Highly active antiretroviral therapy reverses brain metabolite abnormalities in mild HIV dementia.. Neurology, 1999, 53: 782-782 CrossRef PubMed Google Scholar

[106] Chang L, Ernst T, Leonido-Yee M. Cerebral metabolite abnormalities correlate with clinical severity of HIV-1 cognitive motor complex.. Neurology, 1999, 52: 100-100 CrossRef PubMed Google Scholar

[107] Mader I, Rauer S, Gall P. (1)H MR spectroscopy of inflammation, infection and ischemia of the brain.. Eur J Rad, 2008, 67: 250-257 CrossRef PubMed Google Scholar

[108] S?mann, P. G., Schlegel, J., Müller, G., Prantl, F., Emminger, C., Auer, D. P. Serial Proton MR spectroscopy and diffusion imaging findings in HIV-related herpes simplex encephalitis. American Journal of Neuroradiology, 2003, 24(10), 2015. Google Scholar

[109] Lee N M, Friedman H J, Loh H H. Effect of acute and chronic ethanol treatment on rat brain phospholipid turnover. Biochem Pharmacol, 1980, 29: 2815-2818 CrossRef Google Scholar

[110] Obermeier B, Daneman R, Ransohoff R M. Development, maintenance and disruption of the blood-brain barrier.. Nat Med, 2013, 19: 1584-1596 CrossRef PubMed Google Scholar

[111] Banks W A, Kastin A J, Gutierrez E G. Penetration of interleukin-6 across the murine blood-brain barrier. NeuroSci Lett, 1994, 179: 53-56 CrossRef Google Scholar

[112] Banks W A, Kastin A J, Broadwell R D. Passage of cytokines across the blood-brain barrier.. Neuroimmunomodulation, 1995, 2: 241-248 CrossRef PubMed Google Scholar

[113] Estes, M. L., McAllister, A. K. Alterations in immune cells and mediators in the brain: It's not always neuroinflammation Brain Pathology, 2014, 24(6), 623-630. Google Scholar

[114] Rebeles F, Fink J, Anzai Y. Blood-brain barrier imaging and therapeutic potentials.. Top Magn Reson Imag, 2006, 17: 107-116 CrossRef PubMed Google Scholar

[115] Runge V M, Schoerner W, Niendorf H P. Initial clinical evaluation of gadolinium DTPA for contrast-enhanced magnetic resonance imaging. Magn Reson Imag, 1985, 3: 27-35 CrossRef Google Scholar

[116] Ivanidze, J., Mackay, M., Hoang, A., Chi, J. M., Cheng, K., Aranow, C., Sanelli, P. C. Dynamic contrast-enhanced MRI reveals unique blood-brain barrier permeability characteristics in the hippocampus in the normal brain. American Journal of Neuroradiology, 2019, 40(3), 408-411. Google Scholar

[117] Alexander A L, Lee J E, Lazar M. Diffusion tensor imaging of the brain.. Neurotherapeutics, 2007, 4: 316-329 CrossRef PubMed Google Scholar

[118] Abbott N J, Patabendige A A K, Dolman D E M. Structure and function of the blood-brain barrier.. NeuroBiol Dis, 2010, 37: 13-25 CrossRef PubMed Google Scholar

[119] Le Bihan D, Mangin J F, Poupon C. Diffusion tensor imaging: concepts and applications.. J Magn Reson Imag, 2001, 13: 534-546 CrossRef PubMed Google Scholar

[120] Assaf Y, Pasternak O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review.. J Mol Neurosci, 2008, 34: 51-61 CrossRef PubMed Google Scholar

[121] Pierpaoli C, Jezzard P, Basser P J. Diffusion tensor MR imaging of the human brain.. Radiology, 1996, 201: 637-648 CrossRef PubMed Google Scholar

[122] Inglese M, Bester M. Diffusion imaging in multiple sclerosis: research and clinical implications.. NMR Biomed, 2010, 23: 865-872 CrossRef PubMed Google Scholar

[123] Smith S M, Jenkinson M, Woolrich M W. Advances in functional and structural MR image analysis and implementation as FSL.. NeuroImage, 2004, 23: S208-S219 CrossRef PubMed Google Scholar

[124] Smith S M, Jenkinson M, Johansen-Berg H. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data.. NeuroImage, 2006, 31: 1487-1505 CrossRef PubMed Google Scholar

[125] Shiu C, Barbier E, Cello F D. HIV-1 gp120 as well as alcohol affect blood-brain barrier permeability and stress fiber formation: involvement of reactive oxygen species.. Alcoholism Clin Exp Res, 2007, 31: 130-137 CrossRef PubMed Google Scholar

[126] Toborek M, Lee Y W, Flora G. Mechanisms of the blood-brain barrier disruption in HIV-1 infection.. Cell Mol Neurobiol, 2005, 25: 181-199 CrossRef PubMed Google Scholar

[127] Petrache I, Birukova A, Ramirez S I. The role of the microtubules in tumor necrosis factor-alpha-induced endothelial cell permeability.. Am J Respir Cell Mol Biol, 2003, 28: 574-581 CrossRef PubMed Google Scholar

[128] Schwartz J A, Speed N M, Gross M D. Acute effects of alcohol administration on regional cerebral blood flow: the role of acetate.. Alcoholism Clin Exp Res, 1993, 17: 1119-1123 CrossRef PubMed Google Scholar

[129] Beamer E, G?l?ncsér F, Horváth G. Purinergic mechanisms in neuroinflammation: An update from molecules to behavior.. Neuropharmacology, 2016, 104: 94-104 CrossRef PubMed Google Scholar

[130] Dai S S, Zhou Y G, Li W. Local Glutamate Level Dictates Adenosine A2A Receptor Regulation of Neuroinflammation and Traumatic Brain Injury. J Neuroscience, 2010, 30: 5802-5810 CrossRef Google Scholar

[131] Ferrante, A., De Simone, R., Ajmone-Cat, M. A., Minghetti, L., Popoli, P. Adenosine receptors and neuroinflammation. In The Adenosine Receptors 2018. 217-237. Humana Press, Cham. Google Scholar

[132] Boison D. Adenosine dysfunction in epilepsy.. Glia, 2012, 60: 1234-1243 CrossRef PubMed Google Scholar

[133] da Rocha Lapa, F., Júnior, S. J. M., Cerutti, M. L., Santos, A. R. S. Pharmacology of adenosine receptors and their signaling role in immunity and inflammation. In Pharmacology and Therapeutics. IntechOpen 2014. Google Scholar

[134] Nagy, L. E., Diamond, I., Casso, D. J., Franklin, C., Gordon, A. S. Ethanol increases extracellular adenosine by inhibiting adenosine uptake via the nucleoside transporter. Journal of Biological Chemistry, 1990, 265(4), 1946-1951. Google Scholar

[135] Clasadonte J, McIver S R, Schmitt L I. Chronic Sleep Restriction Disrupts Sleep Homeostasis and Behavioral Sensitivity to Alcohol by Reducing the Extracellular Accumulation of Adenosine. J Neuroscience, 2014, 34: 1879-1891 CrossRef Google Scholar

[136] Sharma R, Sahota P, Thakkar M M. Role of adenosine and the orexinergic perifornical hypothalamus in sleep-promoting effects of ethanol.. Sleep, 2014, 37: 525-533 CrossRef PubMed Google Scholar

[137] Wiers C E. Adenosine Sheds Light on the Relationship between Alcohol and Sleep. J Neuroscience, 2014, 34: 7733-7734 CrossRef Google Scholar

[138] Ishibashi, K., Tago, T., Wagatsuma, K., Sakata, M., Toyohara, J., Ishii, K. Type 1 metabotropic glutamate receptors measured with a novel PET ligand, 11C-ITMM, in patients with cerebellar ataxia. Journal of Nuclear Medicine, 2018, 59: 1696-1696. Google Scholar

[139] Guo M, Gao Z G, Tyler R. Preclinical evaluation of the first adenosine A1 receptor partial agonist radioligand for Positron Emission Tomography imaging. J Med Chem, 2018, 61: 9966-9975 CrossRef PubMed Google Scholar

[140] Vuorimaa, A., Rissanen, E., Airas, L. In vivo PET imaging of adenosine 2A receptors in neuroinflammatory and neurodegenerative disease. Contrast Media Molecular Imaging, 2017, 2017, 6975841. Google Scholar

[141] Kreft S, Bier D, Holschbach M H. New potent A1 adenosine receptor radioligands for positron emission tomography. Nucl Med Biol, 2017, 44: 69-77 CrossRef PubMed Google Scholar

[142] Elmenhorst E M, Elmenhorst D, Benderoth S. Cognitive impairments by alcohol and sleep deprivation indicate trait characteristics and a potential role for adenosine A1 receptors. Proc Natl Acad Sci USA, 2018, 115: 8009-8014 CrossRef PubMed Google Scholar

[143] Carmichael F., Salvida V., Varghese G., Israel Y., Orrego H. Ethanol-induced increase in portal blood flow: Role of acetate A1 and A2-adenosine receptors. American Journal of Physiology, 1988, 255, 417-423. Google Scholar

[144] Orrego H., Carmichael F., Saldiva V., Giles H., Sandrin S., Israel Y. Ethanol-induced increase in portal blood flow: Role of adenosine. American Journal of Physiology, 1988, 254, 495-501. Google Scholar

[145] Fan J, Yang J, Jiang Z. Prediction of Central Nervous System Side Effects Through Drug Permeability to Blood-Brain Barrier and Recommendation Algorithm.. J Comput Biol, 2018, 25: 435-443 CrossRef PubMed Google Scholar

[146] Dirchwolf M. Role of systemic inflammation in cirrhosis: From pathogenesis to prognosis.. WJH, 2015, 7: 1974-1981 CrossRef PubMed Google Scholar

[147] Huang J V, Schooling C M. Inflammation and bone mineral density: A Mendelian randomization study.. Sci Rep, 2017, 7: 8666 CrossRef PubMed Google Scholar

[148] Schuckit M A. Alcohol-use disorders. Lancet, 2009, 373: 492-501 CrossRef Google Scholar

[149] Yudkin, J. S., Kumari, M., Humphries, S. E., Mohamed-Ali, V. Inflammation, obesity, stress and coronary heart disease: Is interleukin-6 the link? Atherosclerosis, 2000, 48(2), 209-214. Google Scholar

[150] Barton, E. A., Baker, C., Leasure, J. L. Investigation of sex differences in the microglial response to binge ethanol and exercise. Brain Science, 2017, 7(10). Google Scholar

[151] Landolt H P. Sleep homeostasis: a role for adenosine in humans?. Biochem Pharmacol, 2008, 75: 2070-2079 CrossRef PubMed Google Scholar

[152] Huang Z L, Urade Y, Hayaishi O. The role of adenosine in the regulation of sleep.. CTMC, 2011, 11: 1047-1057 CrossRef PubMed Google Scholar

[153] Huang, Z. L., Zhang, Z., Qu, W. M. Roles of adenosine and its receptors in sleep-wake regulation. International Review of Neurobiology 2014, 119, 349-371. Academic Press. Google Scholar

[154] Angarita, G. A., Emadi, N., Hodges, S., Morgan, P. T. Sleep abnormalities associated with alcohol, cannabis, cocaine, and opiate use: a comprehensive review. Addiction Science and Clinical Practice, 2016, 11(1), 9. Google Scholar

[155] Colrain I M, Turlington S, Baker F C. Impact of alcoholism on sleep architecture and EEG power spectra in men and women.. Sleep, 2009, 32: 1341-1352 CrossRef PubMed Google Scholar

[156] Hasler, B. P., Pedersen, S. L. Sleep and circadian risk factors for alcohol problems: a brief overview and proposed mechanisms. Current Opinion in Psychology, 2019, 34, 57-62. Google Scholar

[157] Hasler B P, Soehner A M, Clark D B. Sleep and circadian contributions to adolescent alcohol use disorder.. Alcohol, 2015, 49: 377-387 CrossRef PubMed Google Scholar

[158] Roehrs T, Roth T. Sleep, sleepiness, sleep disorders and alcohol use and abuse.. Sleep Med Rev, 2001, 5: 287-297 CrossRef PubMed Google Scholar

[159] Dinges D F, Douglas S D, Hamarman S. Sleep deprivation and human immune function. Adv NeuroImmunol, 1995, 5: 97-110 CrossRef Google Scholar

[160] Manchanda S, Singh H, Kaur T. Low-grade neuroinflammation due to chronic sleep deprivation results in anxiety and learning and memory impairments.. Mol Cell Biochem, 2018, 449: 63-72 CrossRef PubMed Google Scholar

[161] Shearer W T, Reuben J M, Mullington J M. Soluble TNF-alpha receptor 1 and IL-6 plasma levels in humans subjected to the sleep deprivation model of spaceflight.. J Allergy Clin Immunol, 2001, 107: 165-170 CrossRef PubMed Google Scholar

[162] Wisor J P, Schmidt M A, Clegern W C. Evidence for neuroinflammatory and microglial changes in the cerebral response to sleep loss.. Sleep, 2011, 34: 261-272 CrossRef PubMed Google Scholar

[163] Zhu B, Dong Y, Xu Z. Sleep disturbance induces neuroinflammation and impairment of learning and memory.. NeuroBiol Dis, 2012, 48: 348-355 CrossRef PubMed Google Scholar

[164] Sharma R, Engemann S C, Sahota P. Effects of ethanol on extracellular levels of adenosine in the basal forebrain: an in vivo microdialysis study in freely behaving rats.. Alcoholism-Clin Exp Res, 2010, 34: 813-818 CrossRef PubMed Google Scholar

[165] Thakkar M M, Engemann S C, Sharma R. Role of wake-promoting basal forebrain and adenosinergic mechanisms in sleep-promoting effects of ethanol.. Alcoholism-Clin Exp Res, 2010, 34: 997-1005 CrossRef PubMed Google Scholar

[166] Nam H W, McIver S R, Hinton D J. Adenosine and glutamate signaling in neuron-glial interactions: implications in alcoholism and sleep disorders.. Alcohol Clin Exp Res, 2012, 36: 1117-1125 CrossRef PubMed Google Scholar

[167] Sharma, R., Sahota, P., Thakkar, M.M. Alcoholism and sleep. In, The Behavioral, Molecular, Pharmacological, and Clinical Basis of the Sleep-Wake Cycle, 2019. 159-192. Google Scholar

[168] Knapp C M, Ciraulo D A, Datta S. Mechanisms underlying sleep-wake disturbances in alcoholism: focus on the cholinergic pedunculopontine tegmentum.. Behavioural Brain Res, 2014, 274: 291-301 CrossRef PubMed Google Scholar

[169] Ruby C L, Vadnie C A, Hinton D J. Adenosinergic regulation of striatal clock gene expression and ethanol intake during constant light.. Neuropsychopharmacol, 2014, 39: 2432-2440 CrossRef PubMed Google Scholar

[170] Garland, E. L., Froeliger, B., Howard, M. O. Mindfulness training targets neurocognitive mechanisms of addiction at the attention-appraisal-emotion interface. Frontiers in Psychiatry, 2014, 4, 173. Google Scholar

[171] Anterior cingulate cortex: unique role in cognition and emotion.. JNP, 2011, 23: 121-125 CrossRef PubMed Google Scholar

[172] Cheetham A, Allen N B, Whittle S. Volumetric differences in the anterior cingulate cortex prospectively predict alcohol-related problems in adolescence.. Psychopharmacology, 2014, 231: 1731-1742 CrossRef PubMed Google Scholar

[173] Cardenas V A, Studholme C, Gazdzinski S. Deformation-based morphometry of brain changes in alcohol dependence and abstinence.. NeuroImage, 2007, 34: 879-887 CrossRef PubMed Google Scholar

[174] Vollst?dt-Klein S, Hermann D, Rabinstein J. Increased activation of the ACC during a spatial working memory task in alcohol-dependence versus heavy social drinking.. Alcoholism-Clin Exp Res, 2010, 34: 771-776 CrossRef PubMed Google Scholar

[175] Dev S I, Moore R C, Soontornniyomkij B. Peripheral inflammation related to lower fMRI activation during a working memory task and resting functional connectivity among older adults: a preliminary study.. Int J Geriatr Psychiatry, 2017, 32: 341-349 CrossRef PubMed Google Scholar

[176] Passamonti L, Tsvetanov K A, Jones P S. Neuroinflammation and Functional Connectivity in Alzheimer's Disease: Interactive Influences on Cognitive Performance. J Neurosci, 2019, 39: 7218-7226 CrossRef Google Scholar

[177] O'Neill J, Cardenas V A, Meyerhoff D J. Effects of Abstinence on the Brain: Quantitative Magnetic Resonance Imaging and Magnetic Resonance Spectroscopic Imaging in Chronic Alcohol Abuse. Alcoholism Clin Exp Res, 2001, 25: 1673-1682 CrossRef Google Scholar

[178] Sullivan E V, Zahr N M. Neuroinflammation as a neurotoxic mechanism in alcoholism: commentary on "Increased MCP-1 and microglia in various regions of human alcoholic brain".. Exp Neurology, 2008, 213: 10-17 CrossRef PubMed Google Scholar

[179] Ciarmiello A. Imaging of neuroinflammation.. Eur J Nucl Med Mol Imag, 2011, 38: 2198-2201 CrossRef PubMed Google Scholar

[180] Kessler, R. M., Goble, J. C., Bird, J. H., Girton, M. E., Doppman, J. L., Rapoport, S. I., Barranger, J. A. Measurement of blood-brain barrier permeability with positron emission tomography and EDTA. Journal of Cerebral Blood Flow & Metabolism, 1984, 4(3), 323-328. Google Scholar

[181] Pozzilli, C., Bernardi, S., Mansi, L., Picozzi, P., Iannotti, F., Alfano, B., Conforti, P. Quantitative assessment of blood-brain barrier permeability in multiple sclerosis using 68-Ga-EDTA and positron emission tomography. Journal of Neurology, Neurosurgery & Psychiatry, 1988, 51(8), 1058-1062. Google Scholar

[182] Wunder A, Klohs J, Dirnagl U. Non-invasive visualization of CNS inflammation with nuclear and optical imaging.. Neuroscience, 2009, 158: 1161-1173 CrossRef PubMed Google Scholar

[183] Hafkemeijer A, Altmann-Schneider I, de Craen A J M. Associations between age and gray matter volume in anatomical brain networks in middle-aged to older adults.. Aging Cell, 2014, 13: 1068-1074 CrossRef PubMed Google Scholar

[184] Paul, C. A., Au, R., Fredman, L., Massaro, J. M., Seshadri, S., DeCarli, C., Wolf, P. A. Association of alcohol consumption with brain volume in the Framingham Study. Archives of Neurology, 2008, 65(10), 1363-1367. Google Scholar

[185] Erickson K I, Raji C A, Lopez O L. Physical activity predicts gray matter volume in late adulthood: the Cardiovascular Health Study.. Neurology, 2010, 75: 1415-1422 CrossRef PubMed Google Scholar

[186] Good C D, Johnsrude I S, Ashburner J. A voxel-based morphometric study of ageing in 465 normal adult human brains.. NeuroImage, 2001, 14: 21-36 CrossRef PubMed Google Scholar

[187] Guerri, C., Pascual, M. Role of toll-like receptor 4 in alcohol-induced neuroinflammation and behavioral dysfunctions. In Neural-Immune Interactions in Brain Function and Alcohol Related Disorders 2013. 279-306. Google Scholar

[188] Lehnardt S, Massillon L, Follett P. Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway.. Proc Natl Acad Sci USA, 2003, 100: 8514-8519 CrossRef PubMed Google Scholar

[189] Hagerty S L, Bidwell L C, Harlaar N. An Exploratory Association Study of Alcohol Use Disorder and DNA Methylation.. Alcohol Clin Exp Res, 2016, 40: 1633-1640 CrossRef PubMed Google Scholar

[190] Karoly H C, Thayer R E, Hagerty S L. TLR4 Methylation Moderates the Relationship Between Alcohol Use Severity and Gray Matter Loss.. J Stud Alcohol Drugs, 2017, 78: 696-705 CrossRef PubMed Google Scholar

[191] Thayer R E, Hagerty S L, Sabbineni A. Negative and interactive effects of sex, aging, and alcohol abuse on gray matter morphometry.. Hum Brain Mapp, 2016, 37: 2276-2292 CrossRef PubMed Google Scholar

[192] Fede S J, Grodin E N, Dean S F. Resting state connectivity best predicts alcohol use severity in moderate to heavy alcohol users.. NeuroImage-Clin, 2019, 22: 101782 CrossRef PubMed Google Scholar

[193] Shokri-Kojori E, Tomasi D, Alipanahi B. Correspondence between cerebral glucose metabolism and BOLD reveals relative power and cost in human brain.. Nat Commun, 2019, 10: 690 CrossRef PubMed Google Scholar

[194] Wang Y, Zhao Y, Nie H. Disrupted Brain Network Efficiency and Decreased Functional Connectivity in Multi-sensory Modality Regions in Male Patients With Alcohol Use Disorder.. Front Hum Neurosci, 2018, 12: 513 CrossRef PubMed Google Scholar

[195] Schacht J P, Anton R F, Myrick H. Functional neuroimaging studies of alcohol cue reactivity: a quantitative meta-analysis and systematic review.. Addiction Biol, 2013, 18: 121-133 CrossRef PubMed Google Scholar

[196] Agrawal, R. G., Hewetson, A., George, C. M., Syapin, P. J., Bergeson, S. E. (). Minocycline reduces ethanol drinking. Brain, Behavior, and Immunity, 2011, 25 : S165-169. Google Scholar

[197] George, F. R. (). The role of arachidonic acid metabolites in mediating ethanol self-administration and intoxication. Annals of the New York Academy of Sciences, 1989, 1(559), 382-391. Google Scholar

[198] Pascual M, Blanco A M, Cauli O. Intermittent ethanol exposure induces inflammatory brain damage and causes long-term behavioural alterations in adolescent rats.. Eur J Neurosci, 2007, 25: 541-550 CrossRef PubMed Google Scholar

[199] Bell R L, Lopez M F, Cui C. Ibudilast reduces alcohol drinking in multiple animal models of alcohol dependence.. Addiction Biol, 2015, 20: 38-42 CrossRef PubMed Google Scholar

[200] Franklin K M, Hauser S R, Lasek A W. Reduction of alcohol drinking of alcohol-preferring (P) and high-alcohol drinking (HAD1) rats by targeting phosphodiesterase-4 (PDE4).. Psychopharmacology, 2015, 232: 2251-2262 CrossRef PubMed Google Scholar

[201] Wen R T, Zhang M, Qin W J. The phosphodiesterase-4 (PDE4) inhibitor rolipram decreases ethanol seeking and consumption in alcohol-preferring Fawn-Hooded rats.. Alcohol Clin Exp Res, 2012, 36: 2157-2167 CrossRef PubMed Google Scholar

[202] Ray L A, Bujarski S, Shoptaw S. Development of the Neuroimmune Modulator Ibudilast for the Treatment of Alcoholism: A Randomized, Placebo-Controlled, Human Laboratory Trial.. Neuropsychopharmacol, 2017, 42: 1776-1788 CrossRef PubMed Google Scholar

[203] Montesinos J, Gil A, Guerri C. Nalmefene Prevents Alcohol-Induced Neuroinflammation and Alcohol Drinking Preference in Adolescent Female Mice: Role of TLR4.. Alcohol Clin Exp Res, 2017, 41: 1257-1270 CrossRef PubMed Google Scholar

[204] Sinclair J D. Drugs to decrease alcohol drinking.. Ann Med, 1990, 22: 357-362 CrossRef PubMed Google Scholar

[205] Castera P, Stewart E, Gro?kopf J. Nalmefene, Given as Needed, in the Routine Treatment of Patients with Alcohol Dependence: An Interventional, Open-Label Study in Primary Care.. Eur Addict Res, 2019, 24: 293-303 CrossRef PubMed Google Scholar

[206] Hendershot C S, Wardell J D, Samokhvalov A V. Effects of naltrexone on alcohol self-administration and craving: meta-analysis of human laboratory studies.. Addiction Biol, 2017, 22: 1515-1527 CrossRef PubMed Google Scholar

[207] Ray L, Chin P, Miotto K. Naltrexone for the treatment of alcoholism: clinical findings, mechanisms of action, and pharmacogenetics.. CNSNDDT, 2010, 9: 13-22 CrossRef PubMed Google Scholar

[208] Ramano?l S, Hoyau E, Kauffmann L. Gray Matter Volume and Cognitive Performance During Normal Aging. A Voxel-Based Morphometry Study.. Front Aging Neurosci, 2018, 10: 235 CrossRef PubMed Google Scholar

[209] Tisserand D J. A voxel-based morphometric study to determine individual differences in gray matter density associated with age and cognitive change over time.. Cerebral Cortex, 2004, 14: 966-973 CrossRef PubMed Google Scholar

[210] Magill M, Ray L A. Cognitive-behavioral treatment with adult alcohol and illicit drug users: a meta-analysis of randomized controlled trials.. J Stud Alcohol Drugs, 2009, 70: 516-527 CrossRef PubMed Google Scholar

[211] Lopresti A L. Cognitive behaviour therapy and inflammation: A systematic review of its relationship and the potential implications for the treatment of depression.. Aust N Z J Psychiatry, 2017, 51: 565-582 CrossRef PubMed Google Scholar

[212] Gryczynski J, Schwartz R P, Fishman M J. Integration of Transcendental Meditation(r) (TM) into alcohol use disorder (AUD) treatment.. J Substance Abuse Treatment, 2018, 87: 23-30 CrossRef PubMed Google Scholar

[213] Creswell J D, Irwin M R, Burklund L J. Mindfulness-Based Stress Reduction training reduces loneliness and pro-inflammatory gene expression in older adults: a small randomized controlled trial.. Brain Behav Immun, 2012, 26: 1095-1101 CrossRef PubMed Google Scholar

[214] Creswell J D, Taren A A, Lindsay E K. Alterations in Resting-State Functional Connectivity Link Mindfulness Meditation With Reduced Interleukin-6: A Randomized Controlled Trial.. Biol Psychiatry, 2016, 80: 53-61 CrossRef PubMed Google Scholar

[215] Malarkey W B, Jarjoura D, Klatt M. Workplace based mindfulness practice and inflammation: a randomized trial.. Brain Behav Immun, 2013, 27: 145-154 CrossRef PubMed Google Scholar

[216] Seo D Y, Heo J W, Ko J R. Exercise and Neuroinflammation in Health and Disease.. Int Neurourol J, 2019, 23: S82-92 CrossRef PubMed Google Scholar

[217] Hallgren M, Vancampfort D, Giesen E S. Exercise as treatment for alcohol use disorders: systematic review and meta-analysis. Br J Sports Med, 2017, 51: 1058-1064 CrossRef Google Scholar

  • Table 1  

    Table 1Direct and indirect indicators of neuroinflammation in AUD

    Marker Imaging methodRegionsFindings
    18-kDA Human PET ([$^{11}$C]PBR28)Averaged across regions; cerebellum; hippocampus$^{\rm~ns}$; striatum$^{\rm~ns}$AUD textless HV [21]
    HippocampusAUD textless HV [22]
    Whole brain, GM, WM, hippocampus, and thalamusAUD textless HV$^{\#}$. neg corr. between cholesterol and PBR binding [23]
    Baboon PET ([$^{18}$F]DPA714)Whole brainBinge textgreater non-binge; sustained TSPO increase after 7 to 12 months [20]
    Rat PET ([$^{11}$C]PBR28)n/aNo significant differences [19]
    Cytokines DSC-MRIThalamus and frontal GM and WMAlcohol-caused increase in CBF in social drinkers [24]
    DSC-MRIAveraged across WM regionsAlcohol-caused increase in CBV in social drinkers [24]
    Glutamate MRSFrontal WMGlu neg corr. with drinking severity & “loss of control" [25]
    ACCAUD textless HV when presented with cues [26]
    Primary visual cortexAUD textless HV in early abstinence (Glx) [27]
    Bilateral medial frontal cortex AUD textless HV in early abstinence [28]
    ACCAUD textless HV in early abstinence [29]
    ACCAUD textgreater HV ([Glu] & [Glu]/[Cr]) [30,31]
    Nucleus accumbensAUD textgreater HV [45]
    Myo-inositol MRSStriatumAUD textgreater HV (in patients with HIV) [32]
    Parietal GMHeavy drinkers textgreater light drinkers [33]
    Averaged across parietal and frontal WMAUD textgreater HV [34]
    Right thalamus, ACCAUD textgreater HV [35]
    Membrane Turnover
    Choline MRSVisual cortexIncrease during heavy drinking ([Cho]/[Cr]) [27]
    Parietal GMHeavy drinkers textgreater light drinkers [33]
    CerebellumAUD textless HV, may or may not recover over time [36,37]
    ACCAUD textless HV [30]
    Left prefrontal cortexAUD textless HV [38]
    Frontal WM, cerebellar cortex, and cerebellar vermisAUD textless HV, recovers after 3 months [39]
    Gadolinium-chelates CE-MRITemporal cortexEthanol induced BBB degradation [40]
    Altered water distributionBilateral frontal and temporal WM; AUD-C+AUD-R textgreater HV [41]
    Bilateral parietal regions, fornix and thalamus
    Adenosine Release
    Acetate$^{\dag}$ PET([$^{11}$C]Acetate)Cerebellum and thalamusIntoxication increases acetate uptake [42]
    ASL-MRIMedial thalamusAcetate increase in CBF [43,44]
    Right orbitofrontal, medial prefrontal, and cingulate cortex, and hippocampus; superior/inferior frontal gyri and bilateral ACCAlcohol increase in CBF [43,44]