logo

SCIENCE CHINA Information Sciences, Volume 63 , Issue 11 : 212206(2020) https://doi.org/10.1007/s11432-019-2813-7

Boolean-network-based approach for construction of filter generators

More info
  • ReceivedNov 24, 2019
  • AcceptedFeb 5, 2020
  • PublishedOct 9, 2020

Abstract


References

[1] Jian Wang , Jiaqi Mu , Shuangqing Wei . Statistical Characterization of Decryption Errors in Block-Ciphered Systems. IEEE Trans Commun, 2015, 63: 4363-4376 CrossRef Google Scholar

[2] Zhong J, Lin D. Driven Stability of Nonlinear Feedback Shift Registers With Inputs. IEEE Trans Commun, 2016, 64: 2274-2284 CrossRef Google Scholar

[3] Zhong J, Lin D. Decomposition of nonlinear feedback shift registers based on Boolean networks. Sci China Inf Sci, 2019, 62: 39110 CrossRef Google Scholar

[4] Liu Y P, Tang X B, Xu Z H. Optimization and temperature effects on sandwich betavoltaic microbattery. Sci China Technol Sci, 2014, 57: 14-18 CrossRef ADS Google Scholar

[5] Kauffman S A. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol, 1969, 22: 437-467 CrossRef Google Scholar

[6] Zhang Y, Liu Y. Nonlinear second-order multi-agent systems subject to antagonistic interactions without velocity constraints. Appl Math Comput 2020, 364:124667. Google Scholar

[7] Cheng D Z, Qi H S, Li Z Q. Analysis and Control of Boolean Networks: A Semi-tensor Product Approach London: Springer, 2011. Google Scholar

[8] Zhong J, Liu Y, Kit Ian Kou, et al. On the ensemble controllability of Boolean control networks using STP method. Appl Math Comput 2019, 358:51--62. Google Scholar

[9] Lin L, Cao J, Rutkowski L. Robust Event-Triggered Control Invariance of Probabilistic Boolean Control Networks. IEEE Trans Neural Netw Learning Syst, 2020, 31: 1060-1065 CrossRef Google Scholar

[10] Huang C, Lu J, Ho D W C. Stabilization of probabilistic Boolean networks via pinning control strategy. Inf Sci, 2020, 510: 205-217 CrossRef Google Scholar

[11] Zhu S, Lu J, Liu Y. Asymptotical Stability of Probabilistic Boolean Networks With State Delays. IEEE Trans Automat Contr, 2020, 65: 1779-1784 CrossRef Google Scholar

[12] Zhong J, Li B, Liu Y. Output feedback stabilizer design of Boolean networks based on network structure. Front Inform Technol Electron Eng, 2020, 21: 247-259 CrossRef Google Scholar

[13] Li H, Zhao G, Meng M. A survey on applications of semi-tensor product method in engineering. Sci China Inf Sci, 2018, 61: 010202 CrossRef Google Scholar

[14] Xu M, Liu Y, Lou J. Set Stabilization of Probabilistic Boolean Control Networks: A Sampled-Data Control Approach. IEEE Trans Cybern, 2019, : 1-8 CrossRef Google Scholar

[15] Zhu S Y, Liu Y, Lou Y J, et al. Stabilization of logical control networks: An event-triggered control approach. Sci China Inf Sci 2020, 63(1):1--11. Google Scholar

[16] Lu J, Sun L, Liu Y. Stabilization of Boolean Control Networks Under Aperiodic Sampled-Data Control. SIAM J Control Optim, 2018, 56: 4385-4404 CrossRef Google Scholar

[17] Li X H, Lu J Q, Qiu J L, et al. Set stability for switched Boolean networks under open-loop/closed-loop switching signals. Sci China Inf Sci 2018, 61:092207. Google Scholar

[18] Liu Y, Li B, Chen H. Function perturbations on singular Boolean networks. Automatica, 2017, 84: 36-42 CrossRef Google Scholar

[19] Zhu Q, Liu Y, Lu J. Observability of Boolean control networks. Sci China Inf Sci, 2018, 61: 092201 CrossRef Google Scholar

[20] Liu H C, Liu Y, Li Y Y, et al. Observability of Boolean networks via stp and graph methods. IET Control Theor Appl 2018, 13(7):1031--1037. Google Scholar

[21] Liu Y, Li B, Lu J. Pinning Control for the Disturbance Decoupling Problem of Boolean Networks. IEEE Trans Automat Contr, 2017, 62: 6595-6601 CrossRef Google Scholar

[22] Li Y, Liu R, Lou J. Output Tracking of Boolean Control Networks Driven by Constant Reference Signal. IEEE Access, 2019, 7: 112572 CrossRef Google Scholar

[23] Wu Y, Shen T. A Finite Convergence Criterion for the Discounted Optimal Control of Stochastic Logical Networks. IEEE Trans Automat Contr, 2018, 63: 262-268 CrossRef Google Scholar

[24] Li Y, Li H, Xu X. Semi-tensor product approach to minimal-agent consensus control of networked evolutionary games. IET Control Theor Appl, 2018, 246: 2269-2275 CrossRef Google Scholar

[25] Zhao J, Chen Z, Liu Z. Modeling and analysis of colored petri net based on the semi-tensor product of matrices. Sci China Inf Sci, 2018, 61: 010205 CrossRef Google Scholar

[26] Li H, Wang Y. Boolean derivative calculation with application to fault detection of combinational circuits via the semi-tensor product method. Automatica, 2012, 48: 688-693 CrossRef Google Scholar

[27] Lu J, Li M, Huang T. The transformation between the Galois NLFSRs and the Fibonacci NLFSRs via semi-tensor product of matrices. Automatica, 2018, 96: 393-397 CrossRef Google Scholar

[28] Dubrova E. On constructing secure and hardware-efficient invertible mappings. In: Proceeding of International Symposium on Multiple-Valued Logic Sapporo, 2016. 211--216. Google Scholar

[29] Liu Z, Wang Y, Cheng D. Nonsingularity of feedback shift registers. Automatica, 2015, 55: 247-253 CrossRef Google Scholar

[30] Lu J, Li M, Liu Y. Nonsingularity of Grain-like cascade FSRs via semi-tensor product. Sci China Inf Sci, 2018, 61: 010204 CrossRef Google Scholar

[31] Zhong J, Lin D. On Minimum Period of Nonlinear Feedback Shift Registers in Grain-Like Structure. IEEE Trans Inform Theor, 2018, 64: 6429-6442 CrossRef Google Scholar

[32] Li N, Dubrova E. Synthesis of power-and area-efficient binary machines for incompletely specified sequences. In: Proceedings of Asia and South Pacific Design Automation Conference Singapore, 2014. 634--639. Google Scholar

[33] Wan Z, Dai Z, Liu M, et al. Nonlinear Feedback Shift Registers (in Chinese. Beijing: Science Press 1978. Google Scholar

[34] Zadeh A A, Heys H M. Simple power analysis applied to nonlinear feedback shift registers. IET Inform Secur, 2014, 3: 188-198 CrossRef Google Scholar

[35] Dubrova E. Synthesis of Binary Machines. IEEE Trans Inform Theor, 2011, 57: 6890-6893 CrossRef Google Scholar

[36] Dubrova E. Synthesis of parallel binary machines. In: Proceedings of the International Conference on Computer-Aided Design San Jose, 2011. 200--206. Google Scholar

[37] Veliz-Cuba A. Reduction of Boolean network models. J Theor Biol, 2011, 289: 167-172 CrossRef Google Scholar

[38] Burman S, Mukhopadhyay D, Veezhinathan K. LFSR based stream ciphers are vulnerable to power attacks. In: Proceedings of International Conference on Cryptology 2007. 384--392. Google Scholar

[39] Goresky M, Klapper A. Algebraic shift register sequences. Cambridge University Press 2012. Google Scholar

[40] Li R, Yang M, Chu T. State Feedback Stabilization for Boolean Control Networks. IEEE Trans Automat Contr, 2013, 58: 1853-1857 CrossRef Google Scholar

  • Table 1  

    Table 1All relations between ${\rm~PD}_{t}$ and $\{{\rm~HW}(x_{1}(t)\oplus~x_{1}(t+1)),~{\rm~HW}(c_{\beta_{t}}\oplus~c_{\beta_{t+1}}),~{\rm~HW}(x_{n}(t+1)\oplus~x_{n}(t+2)),~{\rm~HW}(c_{\beta_{t+1}}\oplus~c_{\beta_{t+2}})\}$

    ${\rm~PD}_{t}$ $\{{\rm~HW}(x_{1}(t)\oplus~x_{1}(t+1)),~{\rm~HW}(c_{\beta_{t}}\oplus~c_{\beta_{t+1}}),~{\rm~HW}(x_{n}(t+1)\oplus~x_{n}(t+2)),~{\rm~HW}(c_{\beta_{t+1}}\oplus~c_{\beta_{t+2}})\}$
    $-$20, 0, 1, 1
    $-$11, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1
    01, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1
    11, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0
    21, 1, 0, 0
  •   

    Algorithm 1 Determine the values of unnecessary bits in sequence $\mathbbm{a}$

    for $t=0$ to $l-1$

    if both of $a_{t}$ and $a_{t+1}$ are unnecessary bits or one of them is unnecessary bit then

    if $(b_{t}\oplus~b_{t+1})=0$ and $(b_{t+1}\oplus~b_{t+2})=1$ then

    Let $a_{t}$ and $a_{t+1}$ satisfy $a_{t}\oplus~a_{t+1}=0$;

    else

    if $(b_{t}\oplus~b_{t+1})=1$ and $(b_{t+1}\oplus~b_{t+2})=0$ then

    Let $a_{t}$ and $a_{t+1}$ satisfy $a_{t}\oplus~a_{t+1}=1$;

    end if

    end if

    else

    $t=t+1$.

    end if

    end for