logo

SCIENCE CHINA Information Sciences, Volume 64 , Issue 9 : 192306(2021) https://doi.org/10.1007/s11432-019-2801-6

Belief propagation list bit-flip decoder for polar codes

More info
  • ReceivedAug 5, 2019
  • AcceptedFeb 18, 2020
  • PublishedAug 18, 2021

Abstract


Acknowledgment

This work was partially supported by National Key Research and Development Project (Grant No. 2018-YFB1802402) and Huawei Tech. Co., Ltd.


References

[1] Arikan E. Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels. IEEE Trans Inform Theor, 2009, 55: 3051-3073 CrossRef Google Scholar

[2] Niu K, Chen K, Lin J. Polar codes: Primary concepts and practical decoding algorithms. IEEE Commun Mag, 2014, 52: 192-203 CrossRef Google Scholar

[3] Alamdar-Yazdi A, Kschischang F R. A Simplified Successive-Cancellation Decoder for Polar Codes. IEEE Commun Lett, 2011, 15: 1378-1380 CrossRef Google Scholar

[4] Tal I, Vardy A. List Decoding of Polar Codes. IEEE Trans Inform Theor, 2015, 61: 2213-2226 CrossRef Google Scholar

[5] Asiadis O, Balatsoukas-Stimming A, Burg A. A low-complexity improved successive cancellation decoder for polar codes. In: Proceedings of the 48th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 2014. 2116--2120. Google Scholar

[6] Zhang Z, Qin K, Zhang L, et al. Progressive bit-fipping decoding of polar codes over layered critical sets. In: Proceedings of IEEE Global Communications Conference, Singapore, 2017. 1--6. Google Scholar

[7] Yu Y R, Pan Z W, Liu N, et al. Successive cancellation list bit-flip decoder for polar codes. In: Proceedings of 10th International Conference on Wireless Communications and Signal Processing, Hangzhou, 2018. 1--6. Google Scholar

[8] Arkan E. A performance comparison of polar codes and Reed-Muller codes. IEEE Commun Lett, 2008, 12: 447-449 CrossRef Google Scholar

[9] Arikan E. Polar codes: a pipelined implementation. In: Proceedings of the 4th International Symposium Broadband Communication, Melaka, 2010. 11--14. Google Scholar

[10] Yuan B, Parhi K K. Early Stopping Criteria for Energy-Efficient Low-Latency Belief-Propagation Polar Code Decoders. IEEE Trans Signal Process, 2014, 62: 6496-6506 CrossRef ADS Google Scholar

[11] Simsek C, Turk K. Simplified Early Stopping Criterion for Belief-Propagation Polar Code Decoders. IEEE Commun Lett, 2016, 20: 1515-1518 CrossRef Google Scholar

[12] Zhang Q, Liu A, Tong X. Early stopping criterion for belief propagation polar decoder based on frozen bits. Electron Lett, 2017, 53: 1576-1578 CrossRef ADS Google Scholar

[13] Yuan B, Parhi K K. Algorithm and architecture for hybrid decoding of polar codes. In: Proceedings of the 48th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 2014, 2050--2053. Google Scholar

[14] Sun S H, Cho S G, Zhang Z Y. Post-processing methods for improving coding gain in belief propagation decoding of polar codes. In: Proceedings of IEEE Global Communications Conference, Singapore, 2017. 1--6. Google Scholar

[15] Elkelesh A, Ebada M, Cammerer S, et al. Belief propagation decoding of polar codes on permuted factor graphs. In: Proceedings of IEEE Wireless Communications and Networking Conference, Barcelona, 2018. 1--6. Google Scholar

[16] Doan N, Hashemi S A, Mondelli M, et al. On the decoding of polar codes on permuted factor graphs. In: Proceedings of IEEE IEEE Global Communications Conference, Abu Dhabi, 2018. 1--6. Google Scholar

[17] Elkelesh A, Ebada M, Cammerer S. Belief Propagation List Decoding of Polar Codes. IEEE Commun Lett, 2018, 22: 1536-1539 CrossRef Google Scholar

[18] Trifonov P. Efficient Design and Decoding of Polar Codes. IEEE Trans Commun, 2012, 60: 3221-3227 CrossRef Google Scholar

[19] Zhang H Z, Li R, Wang J, et al. Parity-check polar coding for 5g and beyond. In: Proceedings of International Conference on Communications, Kansas City, 2018, 1--6. Google Scholar

[20] Yu Y, Pan Z, Liu N. Belief Propagation Bit-Flip Decoder for Polar Codes. IEEE Access, 2019, 7: 10937-10946 CrossRef Google Scholar

  • Figure 1

    Flow chart of the proposed BPLF decoder.

  • Figure 2

    (Color online) BLER performance of BPLF for ${\rm{{\cal~P}}}(1024,512~+~8)$.

  • Figure 4

    (Color online) Computation complexity $\overline~{\rm~Iter}$ of BPLF for ${\rm{{\cal~P}}}(2048,1024+~24)$.

  • Table 1  

    Table 1Average decoding clock cycle of the proposed BPLF decoder for ${\rm{{\cal~P}}}(2048,1024+~24)$

    Decoder SNR (dB)
    2 2.2 2.4 2.6 2.8 3.0 3.2
    BP 285 228 191 169 154 142 133
    CA-BPL, $L=64$ 357 265 213 182 162 148 133
    BPLF, $L=64,T=220$869 408 274 208 180 154 133
    BPF, $w=1$ 1805 847 484 317 228 180 152
    SCL, $L=6$ 5142 5142 5142 5142 5142 5142 5142
qqqq

Contact and support