SCIENCE CHINA Information Sciences, Volume 63 , Issue 8 : 183301(2020) https://doi.org/10.1007/s11432-019-2789-y

Potential key technologies for 6G mobile communications

More info
  • ReceivedSep 30, 2019
  • AcceptedFeb 4, 2020
  • PublishedMay 18, 2020



[1] Cao X, Yang P, Alzenad M, Xi X, Wu D, and Yanikomeroglu H. Airborne communication network: a survey. IEEE Journal on Sel Areas in Commun, 2018, 36: 1907--1926. Google Scholar

[2] International Telecommunications Union (ITU). Focus group on technologies for Network 2030. 2019. https://www.itu.int/en/IUT-T/focusgroups/net2030/. Google Scholar

[3] Pouttu A. 6Genesis-Taking the first steps towards 6G. In: Proceedings of IEEE Conference Standards Communications and Networking, 2018. Google Scholar

[4] Rosenworcel. Talks up to 6G. 2018. https://www.multichannel.com/news/ fccs-rosenworcel-talks-up-6g. Google Scholar

[5] Miao W. We are studying 6G. 2018. http://www.srrc.org.cn/article20461.aspx. Google Scholar

[6] Zhao Y, Yu G, Xu H. 6G mobile communication network: vision, challenges and key technologies (in Chinese). Sci Sin Inform, http: //engine.scichina.com/doi/10.1360/N112019-00033. Google Scholar

[7] Zong B, et al. 6G technologies. IEEE Veh Tech Mag, 2019, 14: 18--27. Google Scholar

[8] Strinati E C, Barbarossa S, Gonzalez-Jimenez J L, et al. 6G: the next frontier. 2019,. arXiv Google Scholar

[9] Saad W, Bennis M, Chen M. A vision of 6G wireless systems: applications, trends, technologies, and open research problems. 2019,. arXiv Google Scholar

[10] David K, Berndt H. 6G Vision and Requirements: Is There Any Need for Beyond 5G?. IEEE Veh Technol Mag, 2018, 13: 72-80 CrossRef Google Scholar

[11] Zong B, Zhao X, Wang J, et al. Photonics defined radio: a new paradigm for future mobile communication of B5G/6G. In: Proceedings of the 6th International Conference Photonics, Optics and Laser Technology, 2018. Google Scholar

[12] Key Drivers and Research Challenges for 6G Ubiquitous Wireless Intelligence. 6G Research Visions 1, http://jultika.oulu.fi/Record/isbn978-952-62-2354-4. Google Scholar

[13] Goodman J W. Introduction to Fourier Optics. New York: McGraw Hill, 1968. Google Scholar

[14] Konkol M R, Ross D D, Shi S, et al. High-power photodiode-integrated-connected arrary antenna. J Lightw Technol, 2017, 35: 200--2016. Google Scholar

[15] Murata H, Kohmu N, Wijayanto Y N, et al. Integration of patch antenna on optical modulators. IEEE Photonic Soc Newslett, 2014, 28: 4--7. Google Scholar

[16] Xu B, Qi W, Zhao Y, et al. Holographic radio interferometry for target tracking in dense multipath indoor environments. In: Proceedings of 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, 2017. 1--6. Google Scholar

[17] Haug F J, Br?uninger M, Ballif C. Fourier light scattering model for treating textures deeper than the wavelength. Opt Express, 2017, 25: A14-14 CrossRef PubMed ADS Google Scholar

[18] Barber Z W, Harrington C, Krishna Mohan R. Spatial-spectral holographic real-time correlative optical processor with >100??Gb/s throughput.. Appl Opt, 2017, 56: 5398-5406 CrossRef PubMed ADS Google Scholar

[19] Prucnal P R, Shastri B J. Neuromorphic Photonics. Boca Raton: CRC, 2017. Google Scholar

[20] Ghafoor S, Boujnah N, Rehmani M H, et al. MAC protocols for Terahertz communication: a comprehensive survey,. arXiv Google Scholar

[21] Petrov V, Pyattaev A, Moltchanov D, et al. Terahertz band communications: Applications, research challenges, and standardization activities. In: Proceedings of 2016 8th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Lisbon, 2016. 183--190. Google Scholar

[22] Huo Y, Dong X, Xu W. Enabling Multi-Functional 5G and Beyond User Equipment: A Survey and Tutorial. IEEE Access, 2019, 7: 116975-117008 CrossRef Google Scholar

[23] Wells J. Faster than fiber: the future of multi-G/s wireless. IEEE Microw Mag, 2009, 10: 104--112. Google Scholar

[24] Rappaport T S, Xing Y, Kanhere O. Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond. IEEE Access, 2019, 7: 78729-78757 CrossRef Google Scholar

[25] Nagatsuma T, Ducournau G, Renaud C C. Advances in terahertz communications accelerated by photonics. Nat Photon, 2016, 10: 371-379 CrossRef ADS Google Scholar

[26] Mittendorff M, Li S, Murphy T E. Graphene-Based Waveguide-Integrated Terahertz Modulator. ACS Photonics, 2017, 4: 316-321 CrossRef Google Scholar

[27] Jornet J M, Akyildiz I F. Graphene-based Plasmonic Nano-Antenna for Terahertz Band Communication in Nanonetworks. IEEE J Sel Areas Commun, 2013, 31: 685-694 CrossRef Google Scholar

[28] Ali M, Pérez-Escudero J M, Guzmán-Martínez R C. 300 GHz Optoelectronic Transmitter Combining Integrated Photonics and Electronic Multipliers for Wireless Communication. Photonics, 2019, 6: 35 CrossRef Google Scholar

[29] Kurner T. Turning THz communications into reality: status on technology: standardization and regulation. In: Proceedings of 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Nagoya, 2018. 1--3. Google Scholar

[30] Renzo M D, Debbah M, Phan-Huy D T. Smart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has come. J Wireless Com Network, 2019, 2019(1): 129 CrossRef Google Scholar

[31] Hu S, Rusek F, Edfors O. Beyond Massive MIMO: The Potential of Data Transmission With Large Intelligent Surfaces. IEEE Trans Signal Process, 2018, 66: 2746-2758 CrossRef ADS arXiv Google Scholar

[32] Ourrat-Ul-Ain N, Abla K, Anas C, et al. Asymptotic analysis of large intelligent surface assisted MIMO communication. 2019,. arXiv Google Scholar

[33] Hu S, Rusek R, Edfors O. The potential of using large antenna arrays on intelligent surfaces. In: Proceedings of IEEE 85th Vehicular Technology Conference, 2017. 1--6. Google Scholar

[34] Ntontin K, Di Renzo M, Song J, et al. Reconfigurable intelligent surfaces vs. relaying: differences, similarities and performance comparison. 2019,. arXiv Google Scholar

[35] Liaskos C, Nie S, Tsioliaridou A, et al. A new wireless communication paradiagm through software-controlled metasurfaces. IEEE Commun Mag, 2018, 56: 162--169. Google Scholar

[36] Taha A, Alrabeiah M, Alkhateeb A. Enabling large intelligent surfaces with compressive sensing and deep learning. 2019,. arXiv Google Scholar

[37] Thidé B, Then H, Sj?holm J. Utilization of Photon Orbital Angular Momentum in the Low-Frequency Radio Domain. Phys Rev Lett, 2007, 99: 087701 CrossRef PubMed ADS arXiv Google Scholar

[38] Zheng S L, Zhang Z F, Pan Y, et al. Plane spiral orbital angular momentum electromagnetic wave. In: Proceedings of IEEE Asia-Pacific Microwave Conference (APMC), Nanjing, 2015. Google Scholar

[39] Lee D, Sasaki H, Fukumoto H, et al. An experiment of 100 Gbps wireless transmission using OAM-MIMO multiplexing in 28 GHz. In: Proceedings of IEEE Global Communications Conference, 2018. Google Scholar

[40] Ren Y, Li L, Xie G. Line-of-Sight Millimeter-Wave Communications Using Orbital Angular Momentum Multiplexing Combined With Conventional Spatial Multiplexing. IEEE Trans Wireless Commun, 2017, 16: 3151-3161 CrossRef Google Scholar

[41] Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications. Adv Opt Photon, 2011, 3: 161-204 CrossRef ADS Google Scholar

[42] Zhang C, Ma L. Detecting the Orbital Angular Momentum of Electro-Magnetic Waves Using Virtual Rotational Antenna. Sci Rep, 2017, 7: 4585 CrossRef PubMed ADS Google Scholar

[43] Edfors O, Johansson A J. Is Orbital Angular Momentum (OAM) Based Radio Communication an Unexploited Area?. IEEE Trans Antennas Propagat, 2012, 60: 1126-1131 CrossRef ADS Google Scholar

[44] Oldoni M, Spinello F, Mari E. Space-Division Demultiplexing in Orbital-Angular-Momentum-Based MIMO Radio Systems. IEEE Trans Antennas Propagat, 2015, 63: 4582-4587 CrossRef ADS Google Scholar

[45] Hui X, Zheng S, Chen Y. Multiplexed Millimeter Wave Communication with Dual Orbital Angular Momentum (OAM) Mode Antennas. Sci Rep, 2015, 5: 10148 CrossRef PubMed ADS Google Scholar

[46] Niemiec R, Brousseau C, et al. Characterization of an OAM antenna using a flat phase plate in the millimeter frequency band. In: Proceedings of IEEE European Conference on Antennas & Propagation, 2014. Google Scholar

[47] Zhang Y, Peng K, Chen Z. Construction of Rate-Compatible Raptor-Like Quasi-Cyclic LDPC Code With Edge Classification for IDMA Based Random Access. IEEE Access, 2019, 7: 30818-30830 CrossRef Google Scholar

[48] Davey M C, MacKay D. Low-density parity check codes over GF(q). IEEE Commun Lett, 1998, 2: 165-167 CrossRef Google Scholar

[49] Sommer N, Feder M, Shalvi O. Low-Density Lattice Codes. IEEE Trans Inform Theor, 2008, 54: 1561-1585 CrossRef Google Scholar

[50] Perry J. Spinal codes. In: Proceedings of ACM Sigcomm Conference on Applications, 2012. 49--60. Google Scholar

[51] Rusek F. Partial response and faster-than-nyquist signaling. Department of Electrical and Information Technology, Lund University, 2007. Google Scholar

[52] TR 38.812. Study on non-orthogonal multiple access (NOMA) for NR. Google Scholar

[53] Meng X M, Wu Y Q, Chen Y, et al. Low complexity receiver for uplink SCMA system via expectation propagation. 2017,. arXiv Google Scholar

[54] Yuan Y. 5G non-orthogonal multiple access study. IEEE Wirel Commun, 2018. 6--8. Google Scholar

[55] 2017, 10. Google Scholar

[56] Tsai C-T, Cheng C-H, Kuo H-C, et al. Toward high-speed visible laser lighting based optical wireless communications. Progress in Quantum Electronics, 2019, 67. Google Scholar

[57] Cohen K, Nedic A, Srikant R. Distributed learning algorithms for spectrum sharing in spatial random access networks. In: Proceedings of the 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), 2015. Google Scholar

[58] Bhattarai S, Park J M, Gao B, et al. An overview of dynamic spectrum sharing: ongoing initiatives, challenges, and a roadmap for future research. IEEE Trans Cogn Commun Netw, 2017, 2: 110--128. Google Scholar

[59] Romero D, Leus G. Wideband Spectrum Sensing From Compressed Measurements Using Spectral Prior Information. IEEE Trans Signal Process, 2013, 61: 6232-6246 CrossRef ADS Google Scholar

[60] RP-182864. Revised WID on cross link interference (CLI) handling and remote interference management (RIM) for NR, LG Electronics, RAN#82, Sorrento, Italy, 2018. Google Scholar