SCIENCE CHINA Information Sciences, Volume 63 , Issue 10 : 202402(2020) https://doi.org/10.1007/s11432-019-2778-8

Reconfigurable vertical field-effect transistor based on graphene/MoTe$_2$/graphite heterostructure

More info
  • ReceivedNov 3, 2019
  • AcceptedJan 21, 2020
  • PublishedSep 3, 2020



This work was supported in part by National Key Basic Research Program of China (Grant No. 2015CB921600), National Natural Science Foundation of China (Grant Nos. 61974176, 61574076, 61921005), Natural Science Foundation of Jiangsu Province (Grant Nos. BK20180330, BK20150055), and Fundamental Research Funds for the Central Universities (Grant Nos. 020414380122, 020414380084).


Figures S1–S5 and Table S1.


[1] Yang X, Liu G, Balandin A A. Triple-Mode Single-Transistor Graphene Amplifier and Its Applications. ACS Nano, 2010, 4: 5532-5538 CrossRef Google Scholar

[2] Moon J S, Curtis D, Zehnder D. Low-Phase-Noise Graphene FETs in Ambipolar RF Applications. IEEE Electron Device Lett, 2011, 32: 270-272 CrossRef ADS Google Scholar

[3] Jariwala D, Sangwan V K, Seo J W T. Large-Area, Low-Voltage, Antiambipolar Heterojunctions from Solution-Processed Semiconductors. Nano Lett, 2015, 15: 416-421 CrossRef ADS arXiv Google Scholar

[4] Wang Z, Ding L, Pei T. Large Signal Operation of Small Band-Gap Carbon Nanotube-Based Ambipolar Transistor: A High-Performance Frequency Doubler. Nano Lett, 2010, 10: 3648-3655 CrossRef ADS Google Scholar

[5] Wang H, Hsu A, Wu J. Graphene-Based Ambipolar RF Mixers. IEEE Electron Device Lett, 2010, 31: 906-908 CrossRef ADS Google Scholar

[6] Han S J, Garcia A V, Oida S. Graphene radio frequency receiver integrated circuit. Nat Commun, 2014, 5: 3086 CrossRef ADS Google Scholar

[7] Han Wang , Nezich D, Jing Kong D. Graphene Frequency Multipliers. IEEE Electron Device Lett, 2009, 30: 547-549 CrossRef ADS Google Scholar

[8] Guerriero E, Polloni L, Rizzi L G. Graphene Audio Voltage Amplifier. Small, 2012, 8: 357-361 CrossRef Google Scholar

[9] Yang X, Liu G, Rostami M. Graphene Ambipolar Multiplier Phase Detector. IEEE Electron Device Lett, 2011, 32: 1328-1330 CrossRef ADS Google Scholar

[10] Zhu W, Yogeesh M N, Yang S. Flexible Black Phosphorus Ambipolar Transistors, Circuits and AM Demodulator. Nano Lett, 2015, 15: 1883-1890 CrossRef ADS Google Scholar

[11] Lee S, Lee K, Liu C H. Flexible and transparent all-graphene circuits for quaternary digital modulations. Nat Commun, 2012, 3: 1018 CrossRef ADS arXiv Google Scholar

[12] Palacios T, Hsu A, Wang H. Applications of graphene devices in RF communications. IEEE Commun Mag, 2010, 48: 122-128 CrossRef Google Scholar

[13] Wang Z, Zhang Z, Xu H. A high-performance top-gate graphene field-effect transistor based frequency doubler. Appl Phys Lett, 2010, 96: 173104 CrossRef ADS Google Scholar

[14] de Marchi M, Sacchetto D, Frache S, et al. Polarity control in double-gate, gate-all-around vertically stacked silicon nanowire fets. In: Proceedings of International Electron Devices Meeting, 2012. Google Scholar

[15] Yoo H, Smits E C P, van Breemen A J J M. Asymmetric Split-Gate Ambipolar Transistor and Its Circuit Application to Complementary Inverter. Adv Mater Technol, 2016, 1: 1600044 CrossRef Google Scholar

[16] Zhang J, De Marchi M, Sacchetto D. Polarity-Controllable Silicon Nanowire Transistors With Dual Threshold Voltages. IEEE Trans Electron Devices, 2014, 61: 3654-3660 CrossRef ADS Google Scholar

[17] Heinzig A, Mikolajick T, Trommer J. Dually Active Silicon Nanowire Transistors and Circuits with Equal Electron and Hole Transport. Nano Lett, 2013, 13: 4176-4181 CrossRef ADS Google Scholar

[18] Heinzig A, Slesazeck S, Kreupl F. Reconfigurable Silicon Nanowire Transistors. Nano Lett, 2012, 12: 119-124 CrossRef ADS Google Scholar

[19] Zhao Y, Candebat D, Delker C. Understanding the Impact of Schottky Barriers on the Performance of Narrow Bandgap Nanowire Field Effect Transistors. Nano Lett, 2012, 12: 5331-5336 CrossRef ADS Google Scholar

[20] Resta G V, Balaji Y, Lin D. Doping-Free Complementary Logic Gates Enabled by Two-Dimensional Polarity-Controllable Transistors. ACS Nano, 2018, 12: 7039-7047 CrossRef Google Scholar

[21] Pang C, Thakuria N, Gupta S K, et al. First demonstration of Wse$_2$ based CMOS-SRAM. In: Proceedings of International Electron Devices Meeting (IEDM), 2018. Google Scholar

[22] Pang C S, Chen Z H. First demonstration of Wse$_2$ CMOS inverter with modulable noise margin by electrostatic doping. In: Proceedings of the 76th Device Research Conference (DRC), 2018. Google Scholar

[23] Liu Y, Zhang G, Zhou H. Ambipolar Barristors for Reconfigurable Logic Circuits. Nano Lett, 2017, 17: 1448-1454 CrossRef ADS Google Scholar

[24] Larentis S, Fallahazad B, Movva H C P. ACS Nano, 2017, 11: 4832-4839 CrossRef Google Scholar

[25] Mongillo M, Spathis P, Katsaros G. Multifunctional Devices and Logic Gates With Undoped Silicon Nanowires. Nano Lett, 2012, 12: 3074-3079 CrossRef ADS arXiv Google Scholar

[26] Trommer J, Heinzig A, Slesazeck S. Elementary Aspects for Circuit Implementation of Reconfigurable Nanowire Transistors. IEEE Electron Device Lett, 2014, 35: 141-143 CrossRef ADS Google Scholar

[27] Gaillardon P E, Tang X, Kim G. A Novel FPGA Architecture Based on Ultrafine Grain Reconfigurable Logic Cells. IEEE Trans VLSI Syst, 2015, 23: 2187-2197 CrossRef Google Scholar

[28] Ben-Jamaa M H, Mohanram K, De Micheli G. An Efficient Gate Library for Ambipolar CNTFET Logic. IEEE Trans Comput-Aided Des Integr Circuits Syst, 2011, 30: 242-255 CrossRef Google Scholar

[29] Mikolajick T, Heinzig A, Trommer J. The RFET-a reconfigurable nanowire transistor and its application to novel electronic circuits and systems. Semicond Sci Technol, 2017, 32: 043001 CrossRef ADS Google Scholar

[30] Trommer J, Heinzig A, Heinrich A. Material Prospects of Reconfigurable Transistor (RFETs) - From Silicon to Germanium Nanowires. MRS Proc, 2014, 1659: 225-230 CrossRef Google Scholar

[31] Weber W M, Heinzig A, Trommer J. Reconfigurable nanowire electronics - A review. Solid-State Electron, 2014, 102: 12-24 CrossRef ADS Google Scholar

[32] Georgiou T, Jalil R, Belle B D. Vertical field-effect transistor based on graphene-WS$_{2}$ heterostructures for flexible and transparent electronics. Nat Nanotech, 2013, 8: 100-103 CrossRef ADS arXiv Google Scholar

[33] Liu Y, Weiss N O, Duan X. Van der Waals heterostructures and devices. Nat Rev Mater, 2016, 1: 16042 CrossRef ADS Google Scholar

[34] Kang J, Jariwala D, Ryder C R. Probing Out-of-Plane Charge Transport in Black Phosphorus with Graphene-Contacted Vertical Field-Effect Transistors. Nano Lett, 2016, 16: 2580-2585 CrossRef ADS arXiv Google Scholar

[35] Yu W J, Li Z, Zhou H. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat Mater, 2013, 12: 246-252 CrossRef ADS Google Scholar

[36] Choi Y, Kang J, Jariwala D. Low?Voltage Complementary Electronics from Ion?Gel?Gated Vertical Van der Waals Heterostructures. Adv Mater, 2016, 28: 3742-3748 CrossRef Google Scholar

[37] Moriya R, Yamaguchi T, Inoue Y. Large current modulation in exfoliated-graphene/MoS$_{2}$/metal vertical heterostructures. Appl Phys Lett, 2014, 105: 083119 CrossRef ADS arXiv Google Scholar

[38] Moriya R, Yamaguchi T, Inoue Y. Influence of the density of states of graphene on the transport properties of graphene/MoS$_{2}$/metal vertical field-effect transistors. Appl Phys Lett, 2015, 106: 223103 CrossRef ADS arXiv Google Scholar

[39] Shim J, Kim H S, Shim Y S. Adv Mater, 2016, 28: 5293-5299 CrossRef Google Scholar

[40] Sata Y, Moriya R, Morikawa S. Electric field modulation of Schottky barrier height in graphene/MoSe$_{2}$ van der Waals heterointerface. Appl Phys Lett, 2015, 107: 023109 CrossRef ADS arXiv Google Scholar

[41] Lin Y F, Li W, Li S L. Barrier inhomogeneities at vertically stacked graphene-based heterostructures. Nanoscale, 2014, 6: 795-799 CrossRef ADS Google Scholar

[42] Liu Y, Zhou H, Cheng R. Highly Flexible Electronics from Scalable Vertical Thin Film Transistors. Nano Lett, 2014, 14: 1413-1418 CrossRef ADS Google Scholar

[43] Parui S, Pietrobon L, Ciudad D. Gate-Controlled Energy Barrier at a Graphene/Molecular Semiconductor Junction. Adv Funct Mater, 2015, 25: 2972-2979 CrossRef Google Scholar

[44] Liu J, Zhou K, Liu J. Organic-Single-Crystal Vertical Field-Effect Transistors and Phototransistors. Adv Mater, 2018, 30: 1803655 CrossRef Google Scholar

[45] Liu Y, Guo J, Zhu E. Maximizing the Current Output in Self-Aligned Graphene-InAs-Metal Vertical Transistors. ACS Nano, 2019, 13: 847-854 CrossRef Google Scholar

[46] Liu J, Qin Z, Gao H. Vertical Organic Field?Effect Transistors. Adv Funct Mater, 2019, 29: 1808453 CrossRef Google Scholar

[47] Pan C, Fu Y, Wang J. Adv Electron Mater, 2018, 4: 1700662 CrossRef Google Scholar

[48] Liang S J, Cheng B, Cui X. Van der Waals Heterostructures for High?¶erformance Device Applications: Challenges and Opportunities. Adv Mater, 2019, 306: 1903800 CrossRef Google Scholar

[49] Hui F. Chemical vapor deposition of hexagonal boron nitride and its use in electronic devices. 2018,. arXiv Google Scholar

[50] Fathipour S, Ma N, Hwang W S. Exfoliated multilayer MoTe$_{2}$ field-effect transistors. Appl Phys Lett, 2014, 105: 192101 CrossRef ADS Google Scholar

[51] Ferrari A C, Meyer J C, Scardaci V. Raman Spectrum of Graphene and Graphene Layers. Phys Rev Lett, 2006, 97: 187401 CrossRef ADS arXiv Google Scholar

[52] Zhou C, Zhao Y, Raju S. Adv Funct Mater, 2016, 26: 4223-4230 CrossRef Google Scholar

  • Figure 1

    (Color online) Device structure and bottom gate field-effect characteristics of the RVFET. (a) Schematic of the RVFET based on graphene/MoTe$_2$/graphite vertical van der Waals heterostructure. (b) Field-effect of drain-source current versus bottom gate voltage under different $V_{\rm~ds}$ biases. The inset shows the optical micrograph of the RVFET.

  • Figure 2

    (Color online) Reconfigurable electrical performance of RVFET. (a), (b) Field-effect transfer curves at $\pm$0.5 V $V_{\rm~ds}$ and different $V_{\rm~tg}$ varies between $-$6 V and 6 V. (c) The typical n-type, V-shape, and p-type transfer characteristic curves from the same RVFET device by reconfiguring the bias voltages of $V_{\rm~ds}$ and $V_{\rm~tg}$.

  • Figure 3

    (Color online) Band diagrams of RVFET corresponding to eight carrier transport regimes (a)–(h) that are the different combinations of the $V_{\rm~bg}$ (80 or $-$80 V), $V_{\rm~tg}$ (6 or $-$6 V), and $V_{\rm~ds}$ (0.5 or $-$0.5 V). Thick solid and thin dashed lines indicate majority and minority injection of the charge carriers, respectively.

  • Figure 4

    (Color online) Temperature-dependent charge transport of RVFET. Field-effect transfer characteristics by sweeping $V_{\rm~bg}$ at different temperatures ranging from 125 to 300 K with $V_{\rm~ds}=0.2$ V in (a) and $V_{\rm~ds}=-0.2$ V in (b). (c) Arrhenius plot at $V_{\rm~ds}=~0.2$ V with $V_{\rm~bg}$ varying from $-$80 to $-$40 V (p-branch) and 40 to 80 V (n-branch). (d) Variation of effective barrier height extracted from the slope of the fitted lines in (c). The top gate was floated in this test.