References
[1]
Dong
X,
Yu
B,
Shi
Z.
Time-Varying Formation Control for Unmanned Aerial Vehicles: Theories and Applications.
IEEE Trans Contr Syst Technol,
2015, 23: 340-348
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Time-Varying Formation Control for Unmanned Aerial Vehicles: Theories and Applications&author=Dong X&author=Yu B&author=Shi Z&publication_year=2015&journal=IEEE Trans Contr Syst Technol&volume=23&pages=340-348
[2]
Li
H,
Xie
P,
Yan
W.
Receding Horizon Formation Tracking Control of Constrained Underactuated Autonomous Underwater Vehicles.
IEEE Trans Ind Electron,
2017, 64: 5004-5013
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Receding Horizon Formation Tracking Control of Constrained Underactuated Autonomous Underwater Vehicles&author=Li H&author=Xie P&author=Yan W&publication_year=2017&journal=IEEE Trans Ind Electron&volume=64&pages=5004-5013
[3]
Chen Wang
,
Guangming Xie
,
Ming Cao
.
Forming Circle Formations of Anonymous Mobile Agents With Order Preservation.
IEEE Trans Automat Contr,
2013, 58: 3248-3254
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Forming Circle Formations of Anonymous Mobile Agents With Order Preservation&author=Chen Wang &author=Guangming Xie &author=Ming Cao &publication_year=2013&journal=IEEE Trans Automat Contr&volume=58&pages=3248-3254
[4]
Ren
W.
Consensus strategies for cooperative control of vehicle formations.
IET Control Theor Appl,
2007, 1: 505-512
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Consensus strategies for cooperative control of vehicle formations&author=Ren W&publication_year=2007&journal=IET Control Theor Appl&volume=1&pages=505-512
[5]
Lin
Z,
Wang
L,
Han
Z.
A Graph Laplacian Approach to Coordinate-Free Formation Stabilization for Directed Networks.
IEEE Trans Automat Contr,
2016, 61: 1269-1280
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Graph Laplacian Approach to Coordinate-Free Formation Stabilization for Directed Networks&author=Lin Z&author=Wang L&author=Han Z&publication_year=2016&journal=IEEE Trans Automat Contr&volume=61&pages=1269-1280
[6]
Dong
X,
Hu
G.
Time-varying formation control for general linear multi-agent systems with switching directed topologies.
Automatica,
2016, 73: 47-55
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Time-varying formation control for general linear multi-agent systems with switching directed topologies&author=Dong X&author=Hu G&publication_year=2016&journal=Automatica&volume=73&pages=47-55
[7]
Zhao
S.
Affine Formation Maneuver Control of Multiagent Systems.
IEEE Trans Automat Contr,
2018, 63: 4140-4155
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Affine Formation Maneuver Control of Multiagent Systems&author=Zhao S&publication_year=2018&journal=IEEE Trans Automat Contr&volume=63&pages=4140-4155
[8]
Porfiri
M,
Roberson
D G,
Stilwell
D J.
Tracking and formation control of multiple autonomous agents: A two-level consensus approach.
Automatica,
2007, 43: 1318-1328
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tracking and formation control of multiple autonomous agents: A two-level consensus approach&author=Porfiri M&author=Roberson D G&author=Stilwell D J&publication_year=2007&journal=Automatica&volume=43&pages=1318-1328
[9]
Ma
C,
Zhang
J.
On formability of linear continuous-time multi-agent systems.
J Syst Sci Complex,
2012, 25: 13-29
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=On formability of linear continuous-time multi-agent systems&author=Ma C&author=Zhang J&publication_year=2012&journal=J Syst Sci Complex&volume=25&pages=13-29
[10]
Dong
X,
Xi
J,
Lu
G.
Formation Control for High-Order Linear Time-Invariant Multiagent Systems With Time Delays.
IEEE Trans Control Netw Syst,
2014, 1: 232-240
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Formation Control for High-Order Linear Time-Invariant Multiagent Systems With Time Delays&author=Dong X&author=Xi J&author=Lu G&publication_year=2014&journal=IEEE Trans Control Netw Syst&volume=1&pages=232-240
[11]
Dong
X,
Shi
Z,
Lu
G.
Time-varying output formation control for high-order linear time-invariant swarm systems.
Inf Sci,
2015, 298: 36-52
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Time-varying output formation control for high-order linear time-invariant swarm systems&author=Dong X&author=Shi Z&author=Lu G&publication_year=2015&journal=Inf Sci&volume=298&pages=36-52
[12]
Dong X W, Hu G Q. Time-varying output formation for linear multiagent systems via dynamic output feedback control. IEEE Trans Control Netw Syst, 2017, 4: 236--245.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dong X W, Hu G Q. Time-varying output formation for linear multiagent systems via dynamic output feedback control. IEEE Trans Control Netw Syst, 2017, 4: 236--245&
[13]
Wang
R,
Dong
X,
Li
Q.
Distributed adaptive time-varying formation for multi-agent systems with general high-order linear time-invariant dynamics.
J Franklin Institute,
2016, 353: 2290-2304
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Distributed adaptive time-varying formation for multi-agent systems with general high-order linear time-invariant dynamics&author=Wang R&author=Dong X&author=Li Q&publication_year=2016&journal=J Franklin Institute&volume=353&pages=2290-2304
[14]
Wang
C,
Zuo
Z,
Gong
Q.
Formation control with disturbance rejection for a class of Lipschitz nonlinear systems.
Sci China Inf Sci,
2017, 60: 070202
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Formation control with disturbance rejection for a class of Lipschitz nonlinear systems&author=Wang C&author=Zuo Z&author=Gong Q&publication_year=2017&journal=Sci China Inf Sci&volume=60&pages=070202
[15]
Zhu
W,
Zhou
Q,
Wang
D.
Fully distributed consensus of second-order multi-agent systems using adaptive event-based control.
Sci China Inf Sci,
2018, 61: 129201
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fully distributed consensus of second-order multi-agent systems using adaptive event-based control&author=Zhu W&author=Zhou Q&author=Wang D&publication_year=2018&journal=Sci China Inf Sci&volume=61&pages=129201
[16]
J. Chen, M. G. Gan, J. Huang, L. H. Dou, H. Fang. Formation control of multiple Euler-Lagrange systems via null-space-based behavioral control. Science China Information Sciences, 2016, 59: 010202.
Google Scholar
http://scholar.google.com/scholar_lookup?title=J. Chen, M. G. Gan, J. Huang, L. H. Dou, H. Fang. Formation control of multiple Euler-Lagrange systems via null-space-based behavioral control. Science China Information Sciences, 2016, 59: 010202&
[17]
Wen
G,
Chen
C L P,
Dou
H.
Formation control with obstacle avoidance of second-order multi-agent systems under directed communication topology.
Sci China Inf Sci,
2019, 62: 192205
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Formation control with obstacle avoidance of second-order multi-agent systems under directed communication topology&author=Wen G&author=Chen C L P&author=Dou H&publication_year=2019&journal=Sci China Inf Sci&volume=62&pages=192205
[18]
Tang T, Liu Z X, Chen Z Q. Event-triggered formation control of multi-agent systems. In: Proceedings of the 30th Chinese Control Conference, 2011. 4783--4786.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tang T, Liu Z X, Chen Z Q. Event-triggered formation control of multi-agent systems. In: Proceedings of the 30th Chinese Control Conference, 2011. 4783--4786&
[19]
Li
X,
Dong
X,
Li
Q.
Event-triggered time-varying formation control for general linear multi-agent systems.
J Franklin Institute,
2019, 356: 10179-10195
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Event-triggered time-varying formation control for general linear multi-agent systems&author=Li X&author=Dong X&author=Li Q&publication_year=2019&journal=J Franklin Institute&volume=356&pages=10179-10195
[20]
X. D. Li, X. Dong, Q. D. Li, and Z. Ren. Event-triggered time-varying formation control for general linear multi-agent systems. Journal of the Franklin Institute, 2018.
Google Scholar
http://scholar.google.com/scholar_lookup?title=X. D. Li, X. Dong, Q. D. Li, and Z. Ren. Event-triggered time-varying formation control for general linear multi-agent systems. Journal of the Franklin Institute, 2018&
[21]
Zhu
W,
Cao
W,
Jiang
Z P.
Distributed Event-Triggered Formation Control of Multiagent Systems via Complex-Valued Laplacian.
IEEE Trans Cybern,
2019, : 1-10
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Distributed Event-Triggered Formation Control of Multiagent Systems via Complex-Valued Laplacian&author=Zhu W&author=Cao W&author=Jiang Z P&publication_year=2019&journal=IEEE Trans Cybern&pages=1-10
[22]
Wang
J,
Xu
Y,
Xu
Y.
Time-varying formation for high-order multi-agent systems with external disturbances by event-triggered integral sliding mode control.
Appl Math Computation,
2019, 359: 333-343
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Time-varying formation for high-order multi-agent systems with external disturbances by event-triggered integral sliding mode control&author=Wang J&author=Xu Y&author=Xu Y&publication_year=2019&journal=Appl Math Computation&volume=359&pages=333-343
[23]
J. H. Wang, X. Zhang, Y. Xu and D. D. Yang. Distributed adaptive formation control for non-identical non-linear multi-agents systems based on sliding mode. IET Control Theory & Applications, 2019, 13: 222--229.
Google Scholar
http://scholar.google.com/scholar_lookup?title=J. H. Wang, X. Zhang, Y. Xu and D. D. Yang. Distributed adaptive formation control for non-identical non-linear multi-agents systems based on sliding mode. IET Control Theory & Applications, 2019, 13: 222--229&
[24]
Liu
T,
Jiang
Z P.
Distributed formation control of nonholonomic mobile robots without global position measurements.
Automatica,
2013, 49: 592-600
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Distributed formation control of nonholonomic mobile robots without global position measurements&author=Liu T&author=Jiang Z P&publication_year=2013&journal=Automatica&volume=49&pages=592-600
[25]
Wang
P,
Ding
B.
Distributed RHC for Tracking and Formation of Nonholonomic Multi-Vehicle Systems.
IEEE Trans Automat Contr,
2014, 59: 1439-1453
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Distributed RHC for Tracking and Formation of Nonholonomic Multi-Vehicle Systems&author=Wang P&author=Ding B&publication_year=2014&journal=IEEE Trans Automat Contr&volume=59&pages=1439-1453
[26]
Yoo
S J,
Kim
T H.
Predesignated fault-tolerant formation tracking quality for networked uncertain nonholonomic mobile robots in the presence of multiple faults.
Automatica,
2017, 77: 380-387
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Predesignated fault-tolerant formation tracking quality for networked uncertain nonholonomic mobile robots in the presence of multiple faults&author=Yoo S J&author=Kim T H&publication_year=2017&journal=Automatica&volume=77&pages=380-387
[27]
Godsil C D, Royle G. Algebraic Graph Theory. New York: Springer, 2001.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Godsil C D, Royle G. Algebraic Graph Theory. New York: Springer, 2001&