References
[1]
Yang
C,
Jiang
Y,
Li
Z.
Neural Control of Bimanual Robots With Guaranteed Global Stability and Motion Precision.
IEEE Trans Ind Inf,
2017, 13: 1162-1171
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Neural Control of Bimanual Robots With Guaranteed Global Stability and Motion Precision&author=Yang C&author=Jiang Y&author=Li Z&publication_year=2017&journal=IEEE Trans Ind Inf&volume=13&pages=1162-1171
[2]
Liu
Y J,
Tong
S.
Adaptive NN tracking control of uncertain nonlinear discrete-time systems with nonaffine dead-zone input..
IEEE Trans Cybern,
2015, 45: 497-505
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Adaptive NN tracking control of uncertain nonlinear discrete-time systems with nonaffine dead-zone input.&author=Liu Y J&author=Tong S&publication_year=2015&journal=IEEE Trans Cybern&volume=45&pages=497-505
[3]
Hu
G,
Gans
N,
Fitz-Coy
N.
Adaptive Homography-Based Visual Servo Tracking Control via a Quaternion Formulation.
IEEE Trans Contr Syst Technol,
2010, 18: 128-135
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Adaptive Homography-Based Visual Servo Tracking Control via a Quaternion Formulation&author=Hu G&author=Gans N&author=Fitz-Coy N&publication_year=2010&journal=IEEE Trans Contr Syst Technol&volume=18&pages=128-135
[4]
Yang
C,
Zeng
C,
Cong
Y.
A Learning Framework of Adaptive Manipulative Skills From Human to Robot.
IEEE Trans Ind Inf,
2019, 15: 1153-1161
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Learning Framework of Adaptive Manipulative Skills From Human to Robot&author=Yang C&author=Zeng C&author=Cong Y&publication_year=2019&journal=IEEE Trans Ind Inf&volume=15&pages=1153-1161
[5]
La
H M,
Dinh
T H,
Pham
N H.
Automated robotic monitoring and inspection of steel structures and bridges.
Robotica,
2019, 37: 947-967
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Automated robotic monitoring and inspection of steel structures and bridges&author=La H M&author=Dinh T H&author=Pham N H&publication_year=2019&journal=Robotica&volume=37&pages=947-967
[6]
Yang
C,
Peng
G,
Cheng
L.
Force Sensorless Admittance Control for Teleoperation of Uncertain Robot Manipulator Using Neural Networks.
IEEE Trans Syst Man Cybern Syst,
2019, : 1-11
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Force Sensorless Admittance Control for Teleoperation of Uncertain Robot Manipulator Using Neural Networks&author=Yang C&author=Peng G&author=Cheng L&publication_year=2019&journal=IEEE Trans Syst Man Cybern Syst&pages=1-11
[7]
Kim
U,
Lee
D H,
Kim
Y B.
S-Surge: Novel Portable Surgical Robot with Multiaxis Force-Sensing Capability for Minimally Invasive Surgery.
IEEE/ASME Trans Mechatron,
2017, 22: 1717-1727
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=S-Surge: Novel Portable Surgical Robot with Multiaxis Force-Sensing Capability for Minimally Invasive Surgery&author=Kim U&author=Lee D H&author=Kim Y B&publication_year=2017&journal=IEEE/ASME Trans Mechatron&volume=22&pages=1717-1727
[8]
Aghakhani N, Geravand M, Shahriari N, Vendittelli M, and Oriolo G. Task control with remote center of motion constraint for minimally invasive robotic surgery. In: Proceedings of 2013 IEEE International Conference on Robotics and Automation, 2013. 5807--5812.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Aghakhani N, Geravand M, Shahriari N, Vendittelli M, and Oriolo G. Task control with remote center of motion constraint for minimally invasive robotic surgery. In: Proceedings of 2013 IEEE International Conference on Robotics and Automation, 2013. 5807--5812&
[9]
Kuo
C H,
Dai
J S.
Kinematics of a Fully-Decoupled Remote Center-of-Motion Parallel Manipulator for Minimally Invasive Surgery.
J Med Devices,
2012, 6: 021008
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kinematics of a Fully-Decoupled Remote Center-of-Motion Parallel Manipulator for Minimally Invasive Surgery&author=Kuo C H&author=Dai J S&publication_year=2012&journal=J Med Devices&volume=6&pages=021008
[10]
Jin
L,
Li
S,
Luo
X.
Neural Dynamics for Cooperative Control of Redundant Robot Manipulators.
IEEE Trans Ind Inf,
2018, 14: 3812-3821
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Neural Dynamics for Cooperative Control of Redundant Robot Manipulators&author=Jin L&author=Li S&author=Luo X&publication_year=2018&journal=IEEE Trans Ind Inf&volume=14&pages=3812-3821
[11]
La
H M,
Sheng
W.
Multi-Agent Motion Control in Cluttered and Noisy Environments.
JCM,
2013, 8: 32-46
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multi-Agent Motion Control in Cluttered and Noisy Environments&author=La H M&author=Sheng W&publication_year=2013&journal=JCM&volume=8&pages=32-46
[12]
La H M. Multi-robot swarm for cooperative scalar field mapping. In: Proceedings of Handbook of Research on Design, Control, and Modeling of Swarm Robotics, 2016. 383--395.
Google Scholar
http://scholar.google.com/scholar_lookup?title=La H M. Multi-robot swarm for cooperative scalar field mapping. In: Proceedings of Handbook of Research on Design, Control, and Modeling of Swarm Robotics, 2016. 383--395&
[13]
La
H M,
Lim
R,
Sheng
W.
Multirobot Cooperative Learning for Predator Avoidance.
IEEE Trans Contr Syst Technol,
2015, 23: 52-63
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multirobot Cooperative Learning for Predator Avoidance&author=La H M&author=Lim R&author=Sheng W&publication_year=2015&journal=IEEE Trans Contr Syst Technol&volume=23&pages=52-63
[14]
Khan
A H,
Li
S,
Luo
X.
Obstacle Avoidance and Tracking Control of Redundant Robotic Manipulator: An RNN based Metaheuristic Approach.
IEEE Trans Ind Inf,
2019, : 1-1
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Obstacle Avoidance and Tracking Control of Redundant Robotic Manipulator: An RNN based Metaheuristic Approach&author=Khan A H&author=Li S&author=Luo X&publication_year=2019&journal=IEEE Trans Ind Inf&pages=1-1
[15]
Guo
D,
Zhang
Y.
Acceleration-Level Inequality-Based MAN Scheme for Obstacle Avoidance of Redundant Robot Manipulators.
IEEE Trans Ind Electron,
2014, 61: 6903-6914
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Acceleration-Level Inequality-Based MAN Scheme for Obstacle Avoidance of Redundant Robot Manipulators&author=Guo D&author=Zhang Y&publication_year=2014&journal=IEEE Trans Ind Electron&volume=61&pages=6903-6914
[16]
Tevatia G, Schaal S. Inverse kinematics for humanoid robots. In: Proceedings of IEEE International Conference on Robotics and Automation Symposia Proceedings, 2000. 294--299.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tevatia G, Schaal S. Inverse kinematics for humanoid robots. In: Proceedings of IEEE International Conference on Robotics and Automation Symposia Proceedings, 2000. 294--299&
[17]
Chen
G,
Wang
J,
Wang
H.
A New Type of Planar Two Degree-of-Freedom Remote Center-of-Motion Mechanism Inspired by the Peaucellier-Lipkin Straight-Line Linkage.
J Mech Des,
2019, 141: 015001
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A New Type of Planar Two Degree-of-Freedom Remote Center-of-Motion Mechanism Inspired by the Peaucellier-Lipkin Straight-Line Linkage&author=Chen G&author=Wang J&author=Wang H&publication_year=2019&journal=J Mech Des&volume=141&pages=015001
[18]
Nisar
S,
Endo
T,
Matsuno
F.
Design and optimization of a 2-degree-of-freedom planar remote center of motion mechanism for surgical manipulators with smaller footprint.
Mechanism Machine Theor,
2018, 129: 148-161
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Design and optimization of a 2-degree-of-freedom planar remote center of motion mechanism for surgical manipulators with smaller footprint&author=Nisar S&author=Endo T&author=Matsuno F&publication_year=2018&journal=Mechanism Machine Theor&volume=129&pages=148-161
[19]
Ortmaier T, Hirzinger G. Cartesian control issues for minimally invasive robot surgery. In: Proceedings of 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2000. 565--571.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ortmaier T, Hirzinger G. Cartesian control issues for minimally invasive robot surgery. In: Proceedings of 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2000. 565--571&
[20]
Sandoval J, Poisson G, Vieyres P. A new kinematic formulation of the rcm constraint for redundant torque-controlled robots. In: Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017. 4576--4581.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sandoval J, Poisson G, Vieyres P. A new kinematic formulation of the rcm constraint for redundant torque-controlled robots. In: Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017. 4576--4581&
[21]
Sandoval J, Poisson G, Vieyres P. Improved dynamic formulation for decoupled cartesian admittance control and rcm constraint. In: Proceedings of 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016. 1124--1129.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sandoval J, Poisson G, Vieyres P. Improved dynamic formulation for decoupled cartesian admittance control and rcm constraint. In: Proceedings of 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016. 1124--1129&
[22]
Yang D, Wang L, Xie Y, et al. Optimization-based inverse kinematic analysis of an experimental minimally invasive robotic surgery system. In: Proceedings of 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2015. 1427--1432.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yang D, Wang L, Xie Y, et al. Optimization-based inverse kinematic analysis of an experimental minimally invasive robotic surgery system. In: Proceedings of 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2015. 1427--1432&
[23]
Su H, Shuai L, Jagadesh M, et al. Manipulability optimization control of a serial redundant robot for robot-assisted minimally invasive surgery. In: Proceedings of IEEE International Conference on Robotics and Automation, 2019. 1--6.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Su H, Shuai L, Jagadesh M, et al. Manipulability optimization control of a serial redundant robot for robot-assisted minimally invasive surgery. In: Proceedings of IEEE International Conference on Robotics and Automation, 2019. 1--6&
[24]
Lai W, Cao L, Xu Z, et al. Distal end force sensing with optical fiber bragg gratings for tendon-sheath mechanisms in flexible endoscopic robots. In: Proceedings of 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018. 1--5.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lai W, Cao L, Xu Z, et al. Distal end force sensing with optical fiber bragg gratings for tendon-sheath mechanisms in flexible endoscopic robots. In: Proceedings of 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018. 1--5&
[25]
Bruno
D,
Calinon
S,
Caldwell
D G.
Learning autonomous behaviours for the body of a flexible surgical robot.
Auton Robot,
2017, 41: 333-347
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Learning autonomous behaviours for the body of a flexible surgical robot&author=Bruno D&author=Calinon S&author=Caldwell D G&publication_year=2017&journal=Auton Robot&volume=41&pages=333-347
[26]
Calinon
S,
Bruno
D,
Malekzadeh
M S.
Human-robot skills transfer interfaces for a flexible surgical robot..
Comput Methods Programs Biomed,
2014, 116: 81-96
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Human-robot skills transfer interfaces for a flexible surgical robot.&author=Calinon S&author=Bruno D&author=Malekzadeh M S&publication_year=2014&journal=Comput Methods Programs Biomed&volume=116&pages=81-96
[27]
Xu K, Simaan N. Actuation compensation for flexible surgical snake-like robots with redundant remote actuation. In: Proceedings of IEEE International Conference on Robotics and Automation, 2006. 4148--4154.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Xu K, Simaan N. Actuation compensation for flexible surgical snake-like robots with redundant remote actuation. In: Proceedings of IEEE International Conference on Robotics and Automation, 2006. 4148--4154&
[28]
Li
S,
Chen
S,
Liu
B.
Decentralized kinematic control of a class of collaborative redundant manipulators via recurrent neural networks.
Neurocomputing,
2012, 91: 1-10
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Decentralized kinematic control of a class of collaborative redundant manipulators via recurrent neural networks&author=Li S&author=Chen S&author=Liu B&publication_year=2012&journal=Neurocomputing&volume=91&pages=1-10
[29]
Jin
L,
Li
S,
La
H M.
Manipulability Optimization of Redundant Manipulators Using Dynamic Neural Networks.
IEEE Trans Ind Electron,
2017, 64: 4710-4720
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Manipulability Optimization of Redundant Manipulators Using Dynamic Neural Networks&author=Jin L&author=Li S&author=La H M&publication_year=2017&journal=IEEE Trans Ind Electron&volume=64&pages=4710-4720
[30]
Yang
C,
Wu
H,
Li
Z.
Mind Control of a Robotic Arm With Visual Fusion Technology.
IEEE Trans Ind Inf,
2018, 14: 3822-3830
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mind Control of a Robotic Arm With Visual Fusion Technology&author=Yang C&author=Wu H&author=Li Z&publication_year=2018&journal=IEEE Trans Ind Inf&volume=14&pages=3822-3830
[31]
He
W,
Huang
H,
Ge
S S.
Adaptive Neural Network Control of a Robotic Manipulator With Time-Varying Output Constraints..
IEEE Trans Cybern,
2017, 47: 3136-3147
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Adaptive Neural Network Control of a Robotic Manipulator With Time-Varying Output Constraints.&author=He W&author=Huang H&author=Ge S S&publication_year=2017&journal=IEEE Trans Cybern&volume=47&pages=3136-3147
[32]
Wang
H,
Chen
B,
Lin
C.
Adaptive neural tracking control for a class of stochastic nonlinear systems.
Int J Robust NOnlinear Control,
2014, 24: 1262-1280
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Adaptive neural tracking control for a class of stochastic nonlinear systems&author=Wang H&author=Chen B&author=Lin C&publication_year=2014&journal=Int J Robust NOnlinear Control&volume=24&pages=1262-1280
[33]
Xiao
L,
Li
S,
Lin
F J.
Zeroing Neural Dynamics for Control Design: Comprehensive Analysis on Stability, Robustness, and Convergence Speed.
IEEE Trans Ind Inf,
2019, 15: 2605-2616
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zeroing Neural Dynamics for Control Design: Comprehensive Analysis on Stability, Robustness, and Convergence Speed&author=Xiao L&author=Li S&author=Lin F J&publication_year=2019&journal=IEEE Trans Ind Inf&volume=15&pages=2605-2616
[34]
Wang
H,
Liu
X,
Liu
K.
Robust Adaptive Neural Tracking Control for a Class of Stochastic Nonlinear Interconnected Systems..
IEEE Trans Neural Netw Learning Syst,
2016, 27: 510-523
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Robust Adaptive Neural Tracking Control for a Class of Stochastic Nonlinear Interconnected Systems.&author=Wang H&author=Liu X&author=Liu K&publication_year=2016&journal=IEEE Trans Neural Netw Learning Syst&volume=27&pages=510-523
[35]
Jing
L,
Zhang
J.
Tracking control and parameter identification with quantized ARMAX systems.
Sci China Inf Sci,
2019, 62: 199203
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tracking control and parameter identification with quantized ARMAX systems&author=Jing L&author=Zhang J&publication_year=2019&journal=Sci China Inf Sci&volume=62&pages=199203
[36]
Liao
B,
Liu
W.
Pseudoinverse-type bi-criteria minimization scheme for redundancy resolution of robot manipulators.
Robotica,
2015, 33: 2100-2113
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Pseudoinverse-type bi-criteria minimization scheme for redundancy resolution of robot manipulators&author=Liao B&author=Liu W&publication_year=2015&journal=Robotica&volume=33&pages=2100-2113
[37]
Jin
L,
Zhang
Y.
Discrete-time Zhang neural network of O(τ3) pattern for time-varying matrix pseudoinversion with application to manipulator motion generation.
Neurocomputing,
2014, 142: 165-173
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Discrete-time Zhang neural network of O(τ3) pattern for time-varying matrix pseudoinversion with application to manipulator motion generation&author=Jin L&author=Zhang Y&publication_year=2014&journal=Neurocomputing&volume=142&pages=165-173
[38]
Automatic Supervisory Control of the Configuration and Behavior of Multibody Mechanisms.
IEEE Trans Syst Man Cybern,
1977, 7: 868-871
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Automatic Supervisory Control of the Configuration and Behavior of Multibody Mechanisms&publication_year=1977&journal=IEEE Trans Syst Man Cybern&volume=7&pages=868-871
[39]
Zanchettin
A M,
Bascetta
L,
Rocco
P.
Achieving Humanlike Motion: Resolving Redundancy for Anthropomorphic Industrial Manipulators.
IEEE Robot Automat Mag,
2013, 20: 131-138
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Achieving Humanlike Motion: Resolving Redundancy for Anthropomorphic Industrial Manipulators&author=Zanchettin A M&author=Bascetta L&author=Rocco P&publication_year=2013&journal=IEEE Robot Automat Mag&volume=20&pages=131-138
[40]
Cha
S H,
Lasky
T A,
Velinsky
S A.
Kinematic Redundancy Resolution for Serial-Parallel Manipulators via Local Optimization Including Joint Constraints.
Mech Based Des Struct Machines,
2006, 34: 213-239
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kinematic Redundancy Resolution for Serial-Parallel Manipulators via Local Optimization Including Joint Constraints&author=Cha S H&author=Lasky T A&author=Velinsky S A&publication_year=2006&journal=Mech Based Des Struct Machines&volume=34&pages=213-239
[41]
Cavallo
A,
Russo
A,
Canciello
G.
Hierarchical control for generator and battery in the more electric aircraft.
Sci China Inf Sci,
2019, 62: 192207
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hierarchical control for generator and battery in the more electric aircraft&author=Cavallo A&author=Russo A&author=Canciello G&publication_year=2019&journal=Sci China Inf Sci&volume=62&pages=192207
[42]
Han Ding
,
Tso
S K.
A fully neural-network-based planning scheme for torque minimization of redundant manipulators.
IEEE Trans Ind Electron,
1999, 46: 199-206
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A fully neural-network-based planning scheme for torque minimization of redundant manipulators&author=Han Ding &author=Tso S K&publication_year=1999&journal=IEEE Trans Ind Electron&volume=46&pages=199-206
[43]
He
W,
Yan
Z,
Sun
Y.
Neural-Learning-Based Control for a Constrained Robotic Manipulator With Flexible Joints..
IEEE Trans Neural Netw Learning Syst,
2018, 29: 5993-6003
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Neural-Learning-Based Control for a Constrained Robotic Manipulator With Flexible Joints.&author=He W&author=Yan Z&author=Sun Y&publication_year=2018&journal=IEEE Trans Neural Netw Learning Syst&volume=29&pages=5993-6003
[44]
Wang
H,
Liu
P X,
Bao
J.
Adaptive Neural Output-Feedback Decentralized Control for Large-Scale Nonlinear Systems With Stochastic Disturbances..
IEEE Trans Neural Netw Learning Syst,
2019, : 1-12
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Adaptive Neural Output-Feedback Decentralized Control for Large-Scale Nonlinear Systems With Stochastic Disturbances.&author=Wang H&author=Liu P X&author=Bao J&publication_year=2019&journal=IEEE Trans Neural Netw Learning Syst&pages=1-12
[45]
Jing Na
,
Xuemei Ren
,
Dongdong Zheng
.
Adaptive control for nonlinear pure-feedback systems with high-order sliding mode observer..
IEEE Trans Neural Netw Learning Syst,
2013, 24: 370-382
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Adaptive control for nonlinear pure-feedback systems with high-order sliding mode observer.&author=Jing Na &author=Xuemei Ren &author=Dongdong Zheng &publication_year=2013&journal=IEEE Trans Neural Netw Learning Syst&volume=24&pages=370-382
[46]
He
W,
Yin
Z,
Sun
C.
Adaptive Neural Network Control of a Marine Vessel With Constraints Using the Asymmetric Barrier Lyapunov Function..
IEEE Trans Cybern,
2017, 47: 1641-1651
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Adaptive Neural Network Control of a Marine Vessel With Constraints Using the Asymmetric Barrier Lyapunov Function.&author=He W&author=Yin Z&author=Sun C&publication_year=2017&journal=IEEE Trans Cybern&volume=47&pages=1641-1651
[47]
Yang
C,
Jiang
Y,
Na
J.
Finite-Time Convergence Adaptive Fuzzy Control for Dual-Arm Robot With Unknown Kinematics and Dynamics.
IEEE Trans Fuzzy Syst,
2019, 27: 574-588
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Finite-Time Convergence Adaptive Fuzzy Control for Dual-Arm Robot With Unknown Kinematics and Dynamics&author=Yang C&author=Jiang Y&author=Na J&publication_year=2019&journal=IEEE Trans Fuzzy Syst&volume=27&pages=574-588
[48]
Na
J,
Jing
B,
Huang
Y.
Unknown System Dynamics Estimator for Motion Control of Nonlinear Robotic Systems.
IEEE Trans Ind Electron,
2019, : 1-1
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Unknown System Dynamics Estimator for Motion Control of Nonlinear Robotic Systems&author=Na J&author=Jing B&author=Huang Y&publication_year=2019&journal=IEEE Trans Ind Electron&pages=1-1
[49]
Wang
H,
Xiaoping Liu
P,
Xie
X.
Adaptive fuzzy asymptotical tracking control of nonlinear systems with unmodeled dynamics and quantized actuator.
Inf Sci,
2018,
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Adaptive fuzzy asymptotical tracking control of nonlinear systems with unmodeled dynamics and quantized actuator&author=Wang H&author=Xiaoping Liu P&author=Xie X&publication_year=2018&journal=Inf Sci&
[50]
Yang
C,
Jiang
Y,
He
W.
Adaptive Parameter Estimation and Control Design for Robot Manipulators With Finite-Time Convergence.
IEEE Trans Ind Electron,
2018, 65: 8112-8123
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Adaptive Parameter Estimation and Control Design for Robot Manipulators With Finite-Time Convergence&author=Yang C&author=Jiang Y&author=He W&publication_year=2018&journal=IEEE Trans Ind Electron&volume=65&pages=8112-8123
[51]
Na
J,
Mahyuddin
M N,
Herrmann
G.
Robust adaptive finite-time parameter estimation and control for robotic systems.
Int J Robust NOnlinear Control,
2015, 25: 3045-3071
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Robust adaptive finite-time parameter estimation and control for robotic systems&author=Na J&author=Mahyuddin M N&author=Herrmann G&publication_year=2015&journal=Int J Robust NOnlinear Control&volume=25&pages=3045-3071
[52]
Wang
H,
Liu
P X,
Zhao
X.
Adaptive Fuzzy Finite-Time Control of Nonlinear Systems With Actuator Faults..
IEEE Trans Cybern,
2019, : 1-12
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Adaptive Fuzzy Finite-Time Control of Nonlinear Systems With Actuator Faults.&author=Wang H&author=Liu P X&author=Zhao X&publication_year=2019&journal=IEEE Trans Cybern&pages=1-12
[53]
Li M, Kapoor A, and Taylor R H. A constrained optimization approach to virtual fixtures. In: Proceedings of 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005. 1408--1413.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li M, Kapoor A, and Taylor R H. A constrained optimization approach to virtual fixtures. In: Proceedings of 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005. 1408--1413&
[54]
Parejo
J A,
Ruiz-Cortés
A,
Lozano
S.
Metaheuristic optimization frameworks: a survey and benchmarking.
Soft Comput,
2012, 16: 527-561
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Metaheuristic optimization frameworks: a survey and benchmarking&author=Parejo J A&author=Ruiz-Cortés A&author=Lozano S&publication_year=2012&journal=Soft Comput&volume=16&pages=527-561
[55]
Yang X-S, Engineering Optimization: An Introduction With Metaheuristic Applications. Hoboken: John Wiley & Sons, 2010.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yang X-S, Engineering Optimization: An Introduction With Metaheuristic Applications. Hoboken: John Wiley & Sons, 2010&
[56]
Ren
Z,
Li
P,
Fang
J.
SBA: An Efficient Algorithm for Address Assignment in ZigBee Networks.
Wireless Pers Commun,
2013, 71: 719-734
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=SBA: An Efficient Algorithm for Address Assignment in ZigBee Networks&author=Ren Z&author=Li P&author=Fang J&publication_year=2013&journal=Wireless Pers Commun&volume=71&pages=719-734
[57]
Fang
J,
Zhang
L,
Li
H.
Two-Dimensional Pattern-Coupled Sparse Bayesian Learning via Generalized Approximate Message Passing..
IEEE Trans Image Process,
2016, 25: 2920-2930
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Two-Dimensional Pattern-Coupled Sparse Bayesian Learning via Generalized Approximate Message Passing.&author=Fang J&author=Zhang L&author=Li H&publication_year=2016&journal=IEEE Trans Image Process&volume=25&pages=2920-2930
[58]
Jun Fang
,
Hongbin Li
.
Distributed Estimation of Gauss - Markov Random Fields With One-Bit Quantized Data.
IEEE Signal Process Lett,
2010, 17: 449-452
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Distributed Estimation of Gauss - Markov Random Fields With One-Bit Quantized Data&author=Jun Fang &author=Hongbin Li &publication_year=2010&journal=IEEE Signal Process Lett&volume=17&pages=449-452
[59]
Fang J, Shen Y, Li F, et al. Support knowledge-aided sparse Bayesian learning for compressed sensing. In: Proceedings of 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015. 3786--3790.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fang J, Shen Y, Li F, et al. Support knowledge-aided sparse Bayesian learning for compressed sensing. In: Proceedings of 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015. 3786--3790&
[60]
Jiang X, Li S. Bas: beetle antennae search algorithm for optimization problems. 2017,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Jiang X, Li S. Bas: beetle antennae search algorithm for optimization problems. 2017,&
[61]
Zhang Y, Li S, Xu B. Convergence analysis of beetle antennae search algorithm and its applications. 2019,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang Y, Li S, Xu B. Convergence analysis of beetle antennae search algorithm and its applications. 2019,&
[62]
Zhu Z, Zhang Z, Man W, et al. A new beetle antennae search algorithm for multi-objective energy management in microgrid. In: Proceedings of the 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2018. 1599--1603.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhu Z, Zhang Z, Man W, et al. A new beetle antennae search algorithm for multi-objective energy management in microgrid. In: Proceedings of the 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2018. 1599--1603&
[63]
Yin X, Ma Y. Aggregation service function chain mapping plan based on beetle antennae search algorithm. In: Proceedings of Proceedings of the 2nd International Conference on Telecommunications and Communication Engineering, 2018. 225--230.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yin X, Ma Y. Aggregation service function chain mapping plan based on beetle antennae search algorithm. In: Proceedings of Proceedings of the 2nd International Conference on Telecommunications and Communication Engineering, 2018. 225--230&
[64]
Zhang
Y,
Li
S,
Zou
J.
A Passivity-Based Approach for Kinematic Control of Redundant Manipulators with Constraints.
IEEE Trans Ind Inf,
2019, : 1-1
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Passivity-Based Approach for Kinematic Control of Redundant Manipulators with Constraints&author=Zhang Y&author=Li S&author=Zou J&publication_year=2019&journal=IEEE Trans Ind Inf&pages=1-1
[65]
Chen
D,
Zhang
Y,
Li
S.
Tracking Control of Robot Manipulators with Unknown Models: A Jacobian-Matrix-Adaption Method.
IEEE Trans Ind Inf,
2018, 14: 3044-3053
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tracking Control of Robot Manipulators with Unknown Models: A Jacobian-Matrix-Adaption Method&author=Chen D&author=Zhang Y&author=Li S&publication_year=2018&journal=IEEE Trans Ind Inf&volume=14&pages=3044-3053
[66]
Wu
G.
Kinematic Analysis and Optimal Design of a Wall-mounted Four-limb Parallel Sch?nflies-motion Robot for Pick-and-place Operations.
J Intell Robot Syst,
2017, 85: 663-677
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kinematic Analysis and Optimal Design of a Wall-mounted Four-limb Parallel Sch?nflies-motion Robot for Pick-and-place Operations&author=Wu G&publication_year=2017&journal=J Intell Robot Syst&volume=85&pages=663-677
[67]
Al-Naimi I, Taeim A, and Alajdah N. Fully-automated parallel-kinematic robot for multitask industrial operations. In: Proceedings of 2018 15th International Multi-Conference on Systems, Signals & Devices, 2018. 390--395.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Al-Naimi I, Taeim A, and Alajdah N. Fully-automated parallel-kinematic robot for multitask industrial operations. In: Proceedings of 2018 15th International Multi-Conference on Systems, Signals & Devices, 2018. 390--395&
[68]
Menon A, Prakash R, Behera L. Adaptive critic based optimal kinematic control for a robot manipulator. In: Proceedings of International Conference on Robotics and Automation (ICRA), 2019. 1316--1322.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Menon A, Prakash R, Behera L. Adaptive critic based optimal kinematic control for a robot manipulator. In: Proceedings of International Conference on Robotics and Automation (ICRA), 2019. 1316--1322&
[69]
Corke
P I.
A robotics toolbox for MATLAB.
IEEE Robot Automat Mag,
1996, 3: 24-32
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A robotics toolbox for MATLAB&author=Corke P I&publication_year=1996&journal=IEEE Robot Automat Mag&volume=3&pages=24-32