SCIENCE CHINA Information Sciences, Volume 63 , Issue 10 : 202501(2020) https://doi.org/10.1007/s11432-019-2689-4

Effect on ion-trap quantum computers from the quantum nature of the driving field

Biyao YANG 1,2,3,4, Li YANG 1,3,*
More info
  • ReceivedApr 20, 2019
  • AcceptedSep 22, 2019
  • PublishedMay 18, 2020



This work was supported by National Natural Science Foundation of China (Grant No. 61672517), National Cryptography Development Fund (Grant No. MMJJ20170108), National Key RD Program of China (Grant No. 2016QY03D0503), and Beijing Municipal Science Technology Commission (Grant No. Z191100007119006).


[1] Shor P W. Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on Foundations of Computer Science, 1994. 124--134. Google Scholar

[2] Grover L K. A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, 1996. 212--219. Google Scholar

[3] Deutsch D, Jozsa R. Rapid solution of problems by quantum computation. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1992. 553--558. Google Scholar

[4] Bernstein E, Vazirani U. Quantum Complexity Theory. SIAM J Comput, 1997, 26: 1411-1473 CrossRef Google Scholar

[5] Simon D R. On the power of quantum computation. In: Proceedings of 35th Annual Symposium on Foundations of Computer Science, 1994. 116--123. Google Scholar

[6] Rivest R L, Shamir A, Adleman L. A method for obtaining digital signatures and public-key cryptosystems. Commun ACM, 1978, 21: 120-126 CrossRef Google Scholar

[7] Elgamal T. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans Inform Theor, 1985, 31: 469-472 CrossRef Google Scholar

[8] Cirac J I, Zoller P. Quantum Computations with Cold Trapped Ions.. Phys Rev Lett, 1995, 74: 4091-4094 CrossRef PubMed Google Scholar

[9] Linke N M, Maslov D, Roetteler M. Experimental comparison of two quantum computing architectures.. Proc Natl Acad Sci USA, 2017, 114: 3305-3310 CrossRef PubMed Google Scholar

[10] Monroe C, Raussendorf R, Ruthven A. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys Rev A, 2014, 89: 022317 CrossRef Google Scholar

[11] Piltz C, Sriarunothai T, Varón A F. A trapped-ion-based quantum byte with 10(-5) next-neighbour cross-talk.. Nat Commun, 2014, 5: 4679 CrossRef PubMed Google Scholar

[12] Khromova A, Piltz C, Scharfenberger B. Designer spin pseudomolecule implemented with trapped ions in a magnetic gradient.. Phys Rev Lett, 2012, 108: 220502 CrossRef PubMed Google Scholar

[13] Bowler R, Gaebler J, Lin Y. Coherent diabatic ion transport and separation in a multizone trap array.. Phys Rev Lett, 2012, 109: 080502 CrossRef PubMed Google Scholar

[14] Pagano G, Hess P W, Kaplan H B, et al. Cryogenic trapped-ion system for large scale quantum simulation. Quantum Science and Technology, 2018, 41. Google Scholar

[15] Harty T P, Allcock D T C, Ballance C J. High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit.. Phys Rev Lett, 2014, 113: 220501 CrossRef PubMed Google Scholar

[16] Ballance C J, Harty T P, Linke N M. High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits.. Phys Rev Lett, 2016, 117: 060504 CrossRef PubMed Google Scholar

[17] Gaebler J P, Tan T R, Lin Y. High-Fidelity Universal Gate Set for ^9Be^+ Ion Qubits.. Phys Rev Lett, 2016, 117: 060505 CrossRef PubMed Google Scholar

[18] Leung P H, Landsman K A, Figgatt C. Robust 2-Qubit Gates in a Linear Ion Crystal Using a Frequency-Modulated Driving Force.. Phys Rev Lett, 2018, 120: 020501 CrossRef PubMed Google Scholar

[19] Monz T, Nigg D, Martinez E A. Realization of a scalable Shor algorithm.. Science, 2016, 351: 1068-1070 CrossRef PubMed Google Scholar

[20] Gea-Banacloche J. Some implications of the quantum nature of laser fields for quantum computations. Phys Rev A, 2002, 65: 022308 CrossRef Google Scholar

[21] van Enk S J, Kimble H J. On the classical character of control fields in quantum information processing. Quantum Inf Comput, 2002, 21: 1--13. Google Scholar

[22] Yang L, Yang B Y, Chen Y F. Full Quantum Treatment of Rabi Oscillation Driven by a Pulse Train and Its Application in Ion-Trap Quantum Computation. IEEE J Quantum Electron, 2013, 49: 641-651 CrossRef Google Scholar

[23] Yang L, Chen Y F. A decoherent limit of fault-tolerant quantum computation driven by coherent fields. In: Proceedings of SPIE, 2007. 682708. Google Scholar

[24] Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2010. Google Scholar

[25] Knill E. Quantum computing with realistically noisy devices.. Nature, 2005, 434: 39-44 CrossRef PubMed Google Scholar

[26] Milburn G J, Schneider S, James D F. Ion trap quantum computing with warm ions. Fortschr Phys, 2000, 48: 801--810. Google Scholar

[27] S?rensen A, M?lmer K. Quantum Computation with Ions in Thermal Motion. Phys Rev Lett, 1999, 82: 1971-1974 CrossRef Google Scholar

[28] H$\ddot{a}$ffner H, Roos C F, Blatt R. Quantum computing with trapped ions. Physics Reports, 2008, 4694: 155-203. Google Scholar

[29] Gruska J. Quantum Computing. Wiley Encyclopedia of Computer Science and Engineering. 2009. Google Scholar

[30] Knill E, Laflamme R. Concatenated Quantum Codes. Technical Report, quant-ph/9608012. 1996. Google Scholar

[31] Liang M, Yang L. A note on threshold theorem of fault-tolerant quantum computation. 2010,. arXiv Google Scholar

[32] Watrous J. Theory of Quantum Information. Waterloo: University of Waterloo Fall, 2011. Google Scholar

[33] Luo X L, Zhu X W, Wu Y. All-quantized Jaynes-Cummings interaction for a trapped ultracold ion. Phys Lett A, 1998, 237: 354-358 CrossRef Google Scholar

[34] Mandel L, Wolf E. Optical Coherence and Quantum Optics. Cambridge: Cambridge University Press, 1995. Google Scholar

[35] Born M, Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge: Cambridge University Press, 1999. Google Scholar

[36] Cohen-Tannoudji C, Dupont-Roc J, Grynberg G. Atom-Photon Interactions. Wiley, 1992. Google Scholar

[37] Silberfarb A, Deutsch I H. Continuous measurement with traveling-wave probes. Phys Rev A, 2003, 68: 013817 CrossRef Google Scholar

[38] Sargent M, Scully M O, Lamb W E. Laser Physics Addison-Wesley Pub. Co., 1974. Google Scholar

[39] Wineland D J, Monroe C, Itano W M. Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions.. J Res Natl Inst Stand Technol, 1998, 103: 259 CrossRef PubMed Google Scholar

[40] Steane A. The ion trap quantum information processor. Appl Phys B, 1997, 64: 623. Google Scholar

[41] Aliferis P, Gottesman D, Preskill J. Accuracy threshold for postselected quantum computation. Qantum Inf Comput, 2008, 83: 181--244. Google Scholar

[42] Weidt S, Randall J, Webster S C. Trapped-Ion Quantum Logic with Global Radiation Fields.. Phys Rev Lett, 2016, 117: 220501 CrossRef PubMed Google Scholar

[43] Lekitsch B, Weidt S, Fowler A G. Blueprint for a microwave trapped ion quantum computer.. Sci Adv, 2017, 3: e1601540 CrossRef PubMed Google Scholar

  • Figure 1

    (Color online) Failure probability from field quantization for different initial states and $\bar{n}$. Here, $N$ denotes the operation number and $p_f$ denotes the failure probability. The failure probabilities under the initial state $|1\rangle_{x} |0\rangle_{y}$ and $|1\rangle_{x} |1\rangle_{y}$ are almost the same, and the corresponding curves overlap in both the cases of $\bar{n}=10^6$ and $\bar{n}=10^4$.

  • Table 1  

    Table 1Values of $S_i~~(i=1,2,\ldots,42)$

    Sum Value Sum Value