References
[1]
Ge
S S,
Wang
J.
Robust adaptive tracking for time-varying uncertain nonlinear systems with unknown control coefficients.
IEEE Trans Automat Contr,
2003, 48: 1463-1469
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Robust adaptive tracking for time-varying uncertain nonlinear systems with unknown control coefficients&author=Ge S S&author=Wang J&publication_year=2003&journal=IEEE Trans Automat Contr&volume=48&pages=1463-1469
[2]
Song
Y D,
Huang
X C,
Wen
C Y.
Robust Adaptive Fault-Tolerant PID Control of MIMO Nonlinear Systems With Unknown Control Direction.
IEEE Trans Ind Electron,
2017, 64: 4876-4884
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Robust Adaptive Fault-Tolerant PID Control of MIMO Nonlinear Systems With Unknown Control Direction&author=Song Y D&author=Huang X C&author=Wen C Y&publication_year=2017&journal=IEEE Trans Ind Electron&volume=64&pages=4876-4884
[3]
Xu
J J,
Xu
L,
Xie
L H.
Decentralized control for linear systems with multiple input channels.
Sci China Inf Sci,
2019, 62: 52202
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Decentralized control for linear systems with multiple input channels&author=Xu J J&author=Xu L&author=Xie L H&publication_year=2019&journal=Sci China Inf Sci&volume=62&pages=52202
[4]
Zhu Y, Zheng W X. Multiple Lyapunov Functions Analysis Approach for Discrete-Time Switched Piecewise-Affine Systems Under Dwell-Time Constraints. IEEE Transactions on Automatic Control, DOI: 10.1109/TAC.2019.2938302, 2019.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhu Y, Zheng W X. Multiple Lyapunov Functions Analysis Approach for Discrete-Time Switched Piecewise-Affine Systems Under Dwell-Time Constraints. IEEE Transactions on Automatic Control, DOI: 10.1109/TAC.2019.2938302, 2019&
[5]
Wei
Q L,
Liu
D R,
Lin
Q.
Adaptive Dynamic Programming for Discrete-Time Zero-Sum Games..
IEEE Trans Neural Netw Learning Syst,
2018, 29: 957-969
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Adaptive Dynamic Programming for Discrete-Time Zero-Sum Games.&author=Wei Q L&author=Liu D R&author=Lin Q&publication_year=2018&journal=IEEE Trans Neural Netw Learning Syst&volume=29&pages=957-969
[6]
Li
H Y,
Wang
Y Y,
Yao
D Y.
A sliding mode approach to stabilization of nonlinear Markovian jump singularly perturbed systems.
Automatica,
2018, 97: 404-413
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A sliding mode approach to stabilization of nonlinear Markovian jump singularly perturbed systems&author=Li H Y&author=Wang Y Y&author=Yao D Y&publication_year=2018&journal=Automatica&volume=97&pages=404-413
[7]
Ding
L,
Han
Q L,
Wang
L Y.
Distributed Cooperative Optimal Control of DC Microgrids With Communication Delays.
IEEE Trans Ind Inf,
2018, 14: 3924-3935
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Distributed Cooperative Optimal Control of DC Microgrids With Communication Delays&author=Ding L&author=Han Q L&author=Wang L Y&publication_year=2018&journal=IEEE Trans Ind Inf&volume=14&pages=3924-3935
[8]
Lin
Z L.
Control design in the presence of actuator saturation: from individual systems to multi-agent systems.
Sci China Inf Sci,
2019, 62: 026201
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Control design in the presence of actuator saturation: from individual systems to multi-agent systems&author=Lin Z L&publication_year=2019&journal=Sci China Inf Sci&volume=62&pages=026201
[9]
Lu
Z H,
Zhang
L,
Wang
L.
Controllability analysis of multi-agent systems with switching topology over finite fields.
Sci China Inf Sci,
2019, 62: 12201
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Controllability analysis of multi-agent systems with switching topology over finite fields&author=Lu Z H&author=Zhang L&author=Wang L&publication_year=2019&journal=Sci China Inf Sci&volume=62&pages=12201
[10]
Ren H, Karimi H R, Lu R, et al. Synchronization of Network Systems via Aperiodic Sampled-Data Control with Constant Delay and Application to Unmanned Ground Vehicles. IEEE Transactions on Industrial Electronics, DOI: 10.1109/TIE.2019.2928241, 2019.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ren H, Karimi H R, Lu R, et al. Synchronization of Network Systems via Aperiodic Sampled-Data Control with Constant Delay and Application to Unmanned Ground Vehicles. IEEE Transactions on Industrial Electronics, DOI: 10.1109/TIE.2019.2928241, 2019&
[11]
Zheng
C,
Li
L,
Wang
L.
How much information is needed in quantized nonlinear control?.
Sci China Inf Sci,
2018, 61: 092205
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=How much information is needed in quantized nonlinear control?&author=Zheng C&author=Li L&author=Wang L&publication_year=2018&journal=Sci China Inf Sci&volume=61&pages=092205
[12]
Zhang D, Han Q L, Zhang X M. Network-based modeling and proportional-integral control for direct-drive-wheel systems in wireless network environments. IEEE Transactions on Cybernetics, DOI: 10.1109/TCYB.2019.2924450, 2019.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang D, Han Q L, Zhang X M. Network-based modeling and proportional-integral control for direct-drive-wheel systems in wireless network environments. IEEE Transactions on Cybernetics, DOI: 10.1109/TCYB.2019.2924450, 2019&
[13]
He
W,
Dong
Y.
Adaptive Fuzzy Neural Network Control for a Constrained Robot Using Impedance Learning..
IEEE Trans Neural Netw Learning Syst,
2018, 29: 1174-1186
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Adaptive Fuzzy Neural Network Control for a Constrained Robot Using Impedance Learning.&author=He W&author=Dong Y&publication_year=2018&journal=IEEE Trans Neural Netw Learning Syst&volume=29&pages=1174-1186
[14]
Zhou
Q,
Li
H Y,
Wang
L J.
Prescribed Performance Observer-Based Adaptive Fuzzy Control for Nonstrict-Feedback Stochastic Nonlinear Systems.
IEEE Trans Syst Man Cybern Syst,
2018, 48: 1747-1758
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Prescribed Performance Observer-Based Adaptive Fuzzy Control for Nonstrict-Feedback Stochastic Nonlinear Systems&author=Zhou Q&author=Li H Y&author=Wang L J&publication_year=2018&journal=IEEE Trans Syst Man Cybern Syst&volume=48&pages=1747-1758
[15]
Bai W W, Zhou Q, Li T S, et al. Adaptive reinforcement learning neural network control for uncertain nonlinear system with input saturation. IEEE Transactions on Cybernetics, DOI: 10.1109/TCYB.2019.2921057, 2019.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bai W W, Zhou Q, Li T S, et al. Adaptive reinforcement learning neural network control for uncertain nonlinear system with input saturation. IEEE Transactions on Cybernetics, DOI: 10.1109/TCYB.2019.2921057, 2019&
[16]
Li X M, Zhang B, Li P, et al. Finite-Horizon ${H}_\infty$ State Estimation for Periodic Neural Networks Over Fading Channels. IEEE Transactions on Neural Networks and Learning Systems, DOI: 10.1109/TNNLS.2019.2920368, 2019.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li X M, Zhang B, Li P, et al. Finite-Horizon ${H}_\infty$ State Estimation for Periodic Neural Networks Over Fading Channels. IEEE Transactions on Neural Networks and Learning Systems, DOI: 10.1109/TNNLS.2019.2920368, 2019&
[17]
Tong
S C,
Li
Y M,
Sui
S.
Adaptive Fuzzy Tracking Control Design for SISO Uncertain Nonstrict Feedback Nonlinear Systems.
IEEE Trans Fuzzy Syst,
2016, 24: 1441-1454
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Adaptive Fuzzy Tracking Control Design for SISO Uncertain Nonstrict Feedback Nonlinear Systems&author=Tong S C&author=Li Y M&author=Sui S&publication_year=2016&journal=IEEE Trans Fuzzy Syst&volume=24&pages=1441-1454
[18]
He
W,
Chen
Y H,
Yin
Z.
Adaptive Neural Network Control of an Uncertain Robot With Full-State Constraints..
IEEE Trans Cybern,
2016, 46: 620-629
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Adaptive Neural Network Control of an Uncertain Robot With Full-State Constraints.&author=He W&author=Chen Y H&author=Yin Z&publication_year=2016&journal=IEEE Trans Cybern&volume=46&pages=620-629
[19]
Zhou Q, Zhao S Y, Li H Y, et al. Adaptive neural network tracking control for robotic manipulators with dead zone. IEEE Transactions on Neural Networks and Learning Systems, DOI: 10.1109/TNNLS.2018.2869375, 2018.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhou Q, Zhao S Y, Li H Y, et al. Adaptive neural network tracking control for robotic manipulators with dead zone. IEEE Transactions on Neural Networks and Learning Systems, DOI: 10.1109/TNNLS.2018.2869375, 2018&
[20]
Åström K J, Bernhardsson B. Comparison of periodic and event based sampling for first-order stochastic systems. In: Proceedings of the 14th IFAC World Congress, 1999. 11: 301--306.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Åström K J, Bernhardsson B. Comparison of periodic and event based sampling for first-order stochastic systems. In: Proceedings of the 14th IFAC World Congress, 1999. 11: 301--306&
[21]
Arzén K E. A simple event-based.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Arzén K E. A simple event-based&
[22]
Zhang
L C,
Liang
H J,
Sun
Y H.
Adaptive Event-Triggered Fault Detection Scheme for Semi-Markovian Jump Systems With Output Quantization.
IEEE Trans Syst Man Cybern Syst,
2019, : 1-12
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Adaptive Event-Triggered Fault Detection Scheme for Semi-Markovian Jump Systems With Output Quantization&author=Zhang L C&author=Liang H J&author=Sun Y H&publication_year=2019&journal=IEEE Trans Syst Man Cybern Syst&pages=1-12
[23]
Liang
H J,
Zhang
Z X,
Ahn
C K.
Event-Triggered Fault Detection and Isolation of Discrete-Time Systems Based on Geometric Technique.
IEEE Trans Circuits Syst II,
2019, : 1-1
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Event-Triggered Fault Detection and Isolation of Discrete-Time Systems Based on Geometric Technique&author=Liang H J&author=Zhang Z X&author=Ahn C K&publication_year=2019&journal=IEEE Trans Circuits Syst II&pages=1-1
[24]
Cao
L,
Li
H Y,
Dong
G W.
Event-Triggered Control for Multiagent Systems With Sensor Faults and Input Saturation.
IEEE Trans Syst Man Cybern Syst,
2019, : 1-12
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Event-Triggered Control for Multiagent Systems With Sensor Faults and Input Saturation&author=Cao L&author=Li H Y&author=Dong G W&publication_year=2019&journal=IEEE Trans Syst Man Cybern Syst&pages=1-12
[25]
Heemels
W P M H,
Sandee
J H,
Van Den Bosch
P P J.
Analysis of event-driven controllers for linear systems.
Int J Control,
2008, 81: 571-590
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Analysis of event-driven controllers for linear systems&author=Heemels W P M H&author=Sandee J H&author=Van Den Bosch P P J&publication_year=2008&journal=Int J Control&volume=81&pages=571-590
[26]
Li
Y X,
Yang
G H.
Model-Based Adaptive Event-Triggered Control of Strict-Feedback Nonlinear Systems..
IEEE Trans Neural Netw Learning Syst,
2018, 29: 1033-1045
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Model-Based Adaptive Event-Triggered Control of Strict-Feedback Nonlinear Systems.&author=Li Y X&author=Yang G H&publication_year=2018&journal=IEEE Trans Neural Netw Learning Syst&volume=29&pages=1033-1045
[27]
Ge
X H,
Han
Q L,
Wang
Z D.
A Dynamic Event-Triggered Transmission Scheme for Distributed Set-Membership Estimation Over Wireless Sensor Networks..
IEEE Trans Cybern,
2019, 49: 171-183
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Dynamic Event-Triggered Transmission Scheme for Distributed Set-Membership Estimation Over Wireless Sensor Networks.&author=Ge X H&author=Han Q L&author=Wang Z D&publication_year=2019&journal=IEEE Trans Cybern&volume=49&pages=171-183
[28]
Pan
Y N,
Yang
G H.
Event-triggered fuzzy control for nonlinear networked control systems.
Fuzzy Sets Syst,
2017, 329: 91-107
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Event-triggered fuzzy control for nonlinear networked control systems&author=Pan Y N&author=Yang G H&publication_year=2017&journal=Fuzzy Sets Syst&volume=329&pages=91-107
[29]
Ge
X H,
Han
Q L.
Distributed Formation Control of Networked Multi-Agent Systems Using a Dynamic Event-Triggered Communication Mechanism.
IEEE Trans Ind Electron,
2017, 64: 8118-8127
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Distributed Formation Control of Networked Multi-Agent Systems Using a Dynamic Event-Triggered Communication Mechanism&author=Ge X H&author=Han Q L&publication_year=2017&journal=IEEE Trans Ind Electron&volume=64&pages=8118-8127
[30]
Liu
T F,
Jiang
Z P.
Event-Triggered Control of Nonlinear Systems with State Quantization.
IEEE Trans Automat Contr,
2018, : 1-1
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Event-Triggered Control of Nonlinear Systems with State Quantization&author=Liu T F&author=Jiang Z P&publication_year=2018&journal=IEEE Trans Automat Contr&pages=1-1
[31]
Xing
L T,
Wen
C Y,
Liu
Z T.
Event-Triggered Adaptive Control for a Class of Uncertain Nonlinear Systems.
IEEE Trans Automat Contr,
2017, 62: 2071-2076
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Event-Triggered Adaptive Control for a Class of Uncertain Nonlinear Systems&author=Xing L T&author=Wen C Y&author=Liu Z T&publication_year=2017&journal=IEEE Trans Automat Contr&volume=62&pages=2071-2076
[32]
Xing
L T,
Wen
C Y,
Liu
Z T.
Event-Triggered Output Feedback Control for a Class of Uncertain Nonlinear Systems.
IEEE Trans Automat Contr,
2019, 64: 290-297
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Event-Triggered Output Feedback Control for a Class of Uncertain Nonlinear Systems&author=Xing L T&author=Wen C Y&author=Liu Z T&publication_year=2019&journal=IEEE Trans Automat Contr&volume=64&pages=290-297
[33]
Chen
W S.
Adaptive backstepping dynamic surface control for systems with periodic disturbances using neural networks.
IET Control Theor Appl,
2009, 3: 1383-1394
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Adaptive backstepping dynamic surface control for systems with periodic disturbances using neural networks&author=Chen W S&publication_year=2009&journal=IET Control Theor Appl&volume=3&pages=1383-1394
[34]
Chen
W S,
Jiao
L C,
Li
R H.
Adaptive Backstepping Fuzzy Control for Nonlinearly Parameterized Systems With Periodic Disturbances.
IEEE Trans Fuzzy Syst,
2010, 18: 674-685
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Adaptive Backstepping Fuzzy Control for Nonlinearly Parameterized Systems With Periodic Disturbances&author=Chen W S&author=Jiao L C&author=Li R H&publication_year=2010&journal=IEEE Trans Fuzzy Syst&volume=18&pages=674-685
[35]
Zuo
R W,
Dong
X M,
Liu
Y Z.
Adaptive Neural Control for MIMO Pure-Feedback Nonlinear Systems With Periodic Disturbances..
IEEE Trans Neural Netw Learning Syst,
2019, 30: 1756-1767
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Adaptive Neural Control for MIMO Pure-Feedback Nonlinear Systems With Periodic Disturbances.&author=Zuo R W&author=Dong X M&author=Liu Y Z&publication_year=2019&journal=IEEE Trans Neural Netw Learning Syst&volume=30&pages=1756-1767
[36]
Ning
B,
Han
Q L.
Prescribed Finite-Time Consensus Tracking for Multiagent Systems With Nonholonomic Chained-Form Dynamics.
IEEE Trans Automat Contr,
2019, 64: 1686-1693
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Prescribed Finite-Time Consensus Tracking for Multiagent Systems With Nonholonomic Chained-Form Dynamics&author=Ning B&author=Han Q L&publication_year=2019&journal=IEEE Trans Automat Contr&volume=64&pages=1686-1693
[37]
Liu
Y,
Liu
X P,
Jing
Y W.
Direct Adaptive Preassigned Finite-Time Control With Time-Delay and Quantized Input Using Neural Network..
IEEE Trans Neural Netw Learning Syst,
2019, : 1-10
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Direct Adaptive Preassigned Finite-Time Control With Time-Delay and Quantized Input Using Neural Network.&author=Liu Y&author=Liu X P&author=Jing Y W&publication_year=2019&journal=IEEE Trans Neural Netw Learning Syst&pages=1-10
[38]
Chen
W S,
Wen
C Y,
Wu
J.
Global Exponential/Finite-Time Stability of Nonlinear Adaptive Switching Systems With Applications in Controlling Systems With Unknown Control Direction.
IEEE Trans Automat Contr,
2018, 63: 2738-2744
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Global Exponential/Finite-Time Stability of Nonlinear Adaptive Switching Systems With Applications in Controlling Systems With Unknown Control Direction&author=Chen W S&author=Wen C Y&author=Wu J&publication_year=2018&journal=IEEE Trans Automat Contr&volume=63&pages=2738-2744
[39]
Li
F Z,
Liu
Y G.
Global practical tracking with prescribed transient performance for inherently nonlinear systems with extremely severe uncertainties.
Sci China Inf Sci,
2019, 62: 22204
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Global practical tracking with prescribed transient performance for inherently nonlinear systems with extremely severe uncertainties&author=Li F Z&author=Liu Y G&publication_year=2019&journal=Sci China Inf Sci&volume=62&pages=22204
[40]
Liu
Y,
Liu
X P,
Jing
Y W.
A Novel Finite-Time Adaptive Fuzzy Tracking Control Scheme for Nonstrict Feedback Systems.
IEEE Trans Fuzzy Syst,
2019, 27: 646-658
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Novel Finite-Time Adaptive Fuzzy Tracking Control Scheme for Nonstrict Feedback Systems&author=Liu Y&author=Liu X P&author=Jing Y W&publication_year=2019&journal=IEEE Trans Fuzzy Syst&volume=27&pages=646-658
[41]
Fu
J,
Ma
R C,
Chai
T Y.
Global finite-time stabilization of a class of switched nonlinear systems with the powers of positive odd rational numbers.
Automatica,
2015, 54: 360-373
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Global finite-time stabilization of a class of switched nonlinear systems with the powers of positive odd rational numbers&author=Fu J&author=Ma R C&author=Chai T Y&publication_year=2015&journal=Automatica&volume=54&pages=360-373
[42]
Wang F, Zhang X Y. Adaptive finite time control of nonlinear systems under time-varying actuator failures. IEEE Transactions on Systems, Man, and Cybernetics: Systems, DOI: 10.1109/TSMC.2018.2868329, 2018.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang F, Zhang X Y. Adaptive finite time control of nonlinear systems under time-varying actuator failures. IEEE Transactions on Systems, Man, and Cybernetics: Systems, DOI: 10.1109/TSMC.2018.2868329, 2018&
[43]
Zhao
T,
Liu
J H,
Dian
S Y.
Finite-time control for interval type-2 fuzzy time-delay systems with norm-bounded uncertainties and limited communication capacity.
Inf Sci,
2019, 483: 153-173
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Finite-time control for interval type-2 fuzzy time-delay systems with norm-bounded uncertainties and limited communication capacity&author=Zhao T&author=Liu J H&author=Dian S Y&publication_year=2019&journal=Inf Sci&volume=483&pages=153-173
[44]
Ma H, Li H Y, Liang H J, et al. Adaptive fuzzy event-triggered control for stochastic nonlinear systems with full state constraints and actuator faults. IEEE Transactions on Fuzzy Systems, DOI: 10.1109/TFUZZ.2019.2896843, 2019.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ma H, Li H Y, Liang H J, et al. Adaptive fuzzy event-triggered control for stochastic nonlinear systems with full state constraints and actuator faults. IEEE Transactions on Fuzzy Systems, DOI: 10.1109/TFUZZ.2019.2896843, 2019&
[45]
Yang
Y S,
Zhou
C J.
Robust adaptive fuzzy tracking control for a class of perturbed strict-feedback nonlinear systems via small-gain approach.
Inf Sci,
2005, 170: 211-234
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Robust adaptive fuzzy tracking control for a class of perturbed strict-feedback nonlinear systems via small-gain approach&author=Yang Y S&author=Zhou C J&publication_year=2005&journal=Inf Sci&volume=170&pages=211-234
[46]
Ahn
H S,
Chen
Y Q.
State-dependent periodic adaptive disturbance compensation.
IET Control Theor Appl,
2007, 1: 1008-1014
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=State-dependent periodic adaptive disturbance compensation&author=Ahn H S&author=Chen Y Q&publication_year=2007&journal=IET Control Theor Appl&volume=1&pages=1008-1014
[47]
Wang
F,
Chen
B,
Liu
X P.
Finite-Time Adaptive Fuzzy Tracking Control Design for Nonlinear Systems.
IEEE Trans Fuzzy Syst,
2018, 26: 1207-1216
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Finite-Time Adaptive Fuzzy Tracking Control Design for Nonlinear Systems&author=Wang F&author=Chen B&author=Liu X P&publication_year=2018&journal=IEEE Trans Fuzzy Syst&volume=26&pages=1207-1216
[48]
Park
J,
Sandberg
I W.
Universal Approximation Using Radial-Basis-Function Networks..
Neural Computation,
1991, 3: 246-257
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Universal Approximation Using Radial-Basis-Function Networks.&author=Park J&author=Sandberg I W&publication_year=1991&journal=Neural Computation&volume=3&pages=246-257
[49]
Polycarpou
M M,
Ioannou
P A.
A robust adaptive nonlinear control design.
Automatica,
1996, 32: 423-427
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A robust adaptive nonlinear control design&author=Polycarpou M M&author=Ioannou P A&publication_year=1996&journal=Automatica&volume=32&pages=423-427