References
[1]
Novoselov
K S.
Electric Field Effect in Atomically Thin Carbon Films.
Science,
2004, 306: 666-669
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Electric Field Effect in Atomically Thin Carbon Films&author=Novoselov K S&publication_year=2004&journal=Science&volume=306&pages=666-669
[2]
Jariwala
D,
Sangwan
V K,
Lauhon
L J.
Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing..
Chem Soc Rev,
2013, 42: 2824-2860
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing.&author=Jariwala D&author=Sangwan V K&author=Lauhon L J&publication_year=2013&journal=Chem Soc Rev&volume=42&pages=2824-2860
[3]
Castro Neto
A H,
Guinea
F,
Peres
N M R.
The electronic properties of graphene.
Rev Mod Phys,
2009, 81: 109-162
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=The electronic properties of graphene&author=Castro Neto A H&author=Guinea F&author=Peres N M R&publication_year=2009&journal=Rev Mod Phys&volume=81&pages=109-162
[4]
Avouris
P,
Chen
Z,
Perebeinos
V.
Carbon-based electronics.
Nat Nanotech,
2007, 2: 605-615
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Carbon-based electronics&author=Avouris P&author=Chen Z&author=Perebeinos V&publication_year=2007&journal=Nat Nanotech&volume=2&pages=605-615
[5]
Bonaccorso
F,
Sun
Z,
Hasan
T.
Graphene photonics and optoelectronics.
Nat Photon,
2010, 4: 611-622
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Graphene photonics and optoelectronics&author=Bonaccorso F&author=Sun Z&author=Hasan T&publication_year=2010&journal=Nat Photon&volume=4&pages=611-622
[6]
Zhang
Y,
Tan
Y W,
Stormer
H L.
Experimental observation of the quantum Hall effect and Berry's phase in graphene.
Nature,
2005, 438: 201-204
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Experimental observation of the quantum Hall effect and Berry's phase in graphene&author=Zhang Y&author=Tan Y W&author=Stormer H L&publication_year=2005&journal=Nature&volume=438&pages=201-204
[7]
Novoselov
K S,
Geim
A K,
Morozov
S V.
Two-dimensional gas of massless Dirac fermions in graphene.
Nature,
2005, 438: 197-200
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Two-dimensional gas of massless Dirac fermions in graphene&author=Novoselov K S&author=Geim A K&author=Morozov S V&publication_year=2005&journal=Nature&volume=438&pages=197-200
[8]
Kim
K S,
Zhao
Y,
Jang
H.
Large-scale pattern growth of graphene films for stretchable transparent electrodes.
Nature,
2009, 457: 706-710
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Large-scale pattern growth of graphene films for stretchable transparent electrodes&author=Kim K S&author=Zhao Y&author=Jang H&publication_year=2009&journal=Nature&volume=457&pages=706-710
[9]
Liao
L,
Lin
Y C,
Bao
M Q.
High-speed graphene transistors with a self-aligned nanowire gate.
Nature,
2010, 467: 305-308
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-speed graphene transistors with a self-aligned nanowire gate&author=Liao L&author=Lin Y C&author=Bao M Q&publication_year=2010&journal=Nature&volume=467&pages=305-308
[10]
Yang
H,
Heo
J,
Park
S.
Graphene Barristor, a Triode Device with a Gate-Controlled Schottky Barrier.
Science,
2012, 336: 1140-1143
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Graphene Barristor, a Triode Device with a Gate-Controlled Schottky Barrier&author=Yang H&author=Heo J&author=Park S&publication_year=2012&journal=Science&volume=336&pages=1140-1143
[11]
Lin
Y M,
Valdes-Garcia
A,
Han
S J.
Wafer-Scale Graphene Integrated Circuit.
Science,
2011, 332: 1294-1297
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wafer-Scale Graphene Integrated Circuit&author=Lin Y M&author=Valdes-Garcia A&author=Han S J&publication_year=2011&journal=Science&volume=332&pages=1294-1297
[12]
Liu
M,
Yin
X B,
Ulin-Avila
E.
A graphene-based broadband optical modulator.
Nature,
2011, 474: 64-67
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A graphene-based broadband optical modulator&author=Liu M&author=Yin X B&author=Ulin-Avila E&publication_year=2011&journal=Nature&volume=474&pages=64-67
[13]
Ansell
D,
Radko
I P,
Han
Z.
Hybrid graphene plasmonic waveguide modulators.
Nat Commun,
2015, 6: 8846
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hybrid graphene plasmonic waveguide modulators&author=Ansell D&author=Radko I P&author=Han Z&publication_year=2015&journal=Nat Commun&volume=6&pages=8846
[14]
Liu
C H,
Chang
Y C,
Norris
T B.
Graphene photodetectors with ultra-broadband and high responsivity at room temperature.
Nat Nanotech,
2014, 9: 273-278
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Graphene photodetectors with ultra-broadband and high responsivity at room temperature&author=Liu C H&author=Chang Y C&author=Norris T B&publication_year=2014&journal=Nat Nanotech&volume=9&pages=273-278
[15]
Baugher
B W H,
Churchill
H O H,
Yang
Y.
Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide.
Nat Nanotech,
2014, 9: 262-267
CrossRef
PubMed
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide&author=Baugher B W H&author=Churchill H O H&author=Yang Y&publication_year=2014&journal=Nat Nanotech&volume=9&pages=262-267
[16]
Pospischil
A,
Furchi
M M,
Mueller
T.
Solar-energy conversion and light emission in an atomic monolayer p-n diode.
Nat Nanotech,
2014, 9: 257-261
CrossRef
PubMed
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Solar-energy conversion and light emission in an atomic monolayer p-n diode&author=Pospischil A&author=Furchi M M&author=Mueller T&publication_year=2014&journal=Nat Nanotech&volume=9&pages=257-261
[17]
Koppens
F H L,
Chang
D E,
Garci?a de Abajo
F J.
Graphene Plasmonics: A Platform for Strong Light-Matter Interactions.
Nano Lett,
2011, 11: 3370-3377
CrossRef
PubMed
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Graphene Plasmonics: A Platform for Strong Light-Matter Interactions&author=Koppens F H L&author=Chang D E&author=Garci?a de Abajo F J&publication_year=2011&journal=Nano Lett&volume=11&pages=3370-3377
[18]
Low
T,
Avouris
P.
Graphene plasmonics for terahertz to mid-infrared applications..
ACS Nano,
2014, 8: 1086-1101
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Graphene plasmonics for terahertz to mid-infrared applications.&author=Low T&author=Avouris P&publication_year=2014&journal=ACS Nano&volume=8&pages=1086-1101
[19]
Sun
Z P,
Hasan
T,
Torrisi
F.
Graphene mode-locked ultrafast laser..
ACS Nano,
2010, 4: 803-810
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Graphene mode-locked ultrafast laser.&author=Sun Z P&author=Hasan T&author=Torrisi F&publication_year=2010&journal=ACS Nano&volume=4&pages=803-810
[20]
Konstantatos
G,
Badioli
M,
Gaudreau
L.
Hybrid graphene-quantum dot phototransistors with ultrahigh gain.
Nat Nanotech,
2012, 7: 363-368
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hybrid graphene-quantum dot phototransistors with ultrahigh gain&author=Konstantatos G&author=Badioli M&author=Gaudreau L&publication_year=2012&journal=Nat Nanotech&volume=7&pages=363-368
[21]
Franklin
A D,
Chen
Z.
Length scaling of carbon nanotube transistors.
Nat Nanotech,
2010, 5: 858-862
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Length scaling of carbon nanotube transistors&author=Franklin A D&author=Chen Z&publication_year=2010&journal=Nat Nanotech&volume=5&pages=858-862
[22]
Cao
Q,
Han
S J,
Tulevski
G S.
Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics.
Nat Nanotech,
2013, 8: 180-186
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics&author=Cao Q&author=Han S J&author=Tulevski G S&publication_year=2013&journal=Nat Nanotech&volume=8&pages=180-186
[23]
Itkis
M E,
Borondics
F,
Yu
A.
Bolometric Infrared Photoresponse of Suspended Single-Walled Carbon Nanotube Films.
Science,
2006, 312: 413-416
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bolometric Infrared Photoresponse of Suspended Single-Walled Carbon Nanotube Films&author=Itkis M E&author=Borondics F&author=Yu A&publication_year=2006&journal=Science&volume=312&pages=413-416
[24]
Geier
M L,
Prabhumirashi
P L,
McMorrow
J J.
Subnanowatt Carbon Nanotube Complementary Logic Enabled by Threshold Voltage Control.
Nano Lett,
2013, 13: 4810-4814
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Subnanowatt Carbon Nanotube Complementary Logic Enabled by Threshold Voltage Control&author=Geier M L&author=Prabhumirashi P L&author=McMorrow J J&publication_year=2013&journal=Nano Lett&volume=13&pages=4810-4814
[25]
Park
H,
Afzali
A,
Han
S J.
High-density integration of carbon nanotubes via chemical self-assembly.
Nat Nanotech,
2012, 7: 787-791
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-density integration of carbon nanotubes via chemical self-assembly&author=Park H&author=Afzali A&author=Han S J&publication_year=2012&journal=Nat Nanotech&volume=7&pages=787-791
[26]
Liu
H P,
Nishide
D,
Tanaka
T.
Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography.
Nat Commun,
2011, 2: 309
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography&author=Liu H P&author=Nishide D&author=Tanaka T&publication_year=2011&journal=Nat Commun&volume=2&pages=309
[27]
Zhu
H W,
Xu
C L,
Wu
D H.
Direct Synthesis of Long Single-Walled Carbon Nanotube Strands.
Science,
2002, 296: 884-886
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Direct Synthesis of Long Single-Walled Carbon Nanotube Strands&author=Zhu H W&author=Xu C L&author=Wu D H&publication_year=2002&journal=Science&volume=296&pages=884-886
[28]
Charlier
J C,
Blase
X,
Roche
S.
Electronic and transport properties of nanotubes.
Rev Mod Phys,
2007, 79: 677-732
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Electronic and transport properties of nanotubes&author=Charlier J C&author=Blase X&author=Roche S&publication_year=2007&journal=Rev Mod Phys&volume=79&pages=677-732
[29]
Mintmire
J W,
White
C T.
Universal Density of States for Carbon Nanotubes.
Phys Rev Lett,
1998, 81: 2506-2509
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Universal Density of States for Carbon Nanotubes&author=Mintmire J W&author=White C T&publication_year=1998&journal=Phys Rev Lett&volume=81&pages=2506-2509
[30]
Wong H S P, Akinwande D. Carbon Nanotube and Graphene Device Physics. Cambridge: Cambridge University Press, 2011.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wong H S P, Akinwande D. Carbon Nanotube and Graphene Device Physics. Cambridge: Cambridge University Press, 2011&
[31]
Barone
P W,
Baik
S,
Heller
D A.
Near-infrared optical sensors based on single-walled carbon nanotubes.
Nat Mater,
2004, 4: 86-92
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Near-infrared optical sensors based on single-walled carbon nanotubes&author=Barone P W&author=Baik S&author=Heller D A&publication_year=2004&journal=Nat Mater&volume=4&pages=86-92
[32]
Bahk
Y M,
Ramakrishnan
G,
Choi
J.
Plasmon enhanced terahertz emission from single layer graphene..
ACS Nano,
2014, 8: 9089-9096
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Plasmon enhanced terahertz emission from single layer graphene.&author=Bahk Y M&author=Ramakrishnan G&author=Choi J&publication_year=2014&journal=ACS Nano&volume=8&pages=9089-9096
[33]
Behnam
A,
Sangwan
V K,
Zhong
X.
High-field transport and thermal reliability of sorted carbon nanotube network devices..
ACS Nano,
2013, 7: 482-490
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-field transport and thermal reliability of sorted carbon nanotube network devices.&author=Behnam A&author=Sangwan V K&author=Zhong X&publication_year=2013&journal=ACS Nano&volume=7&pages=482-490
[34]
Iijima
S.
Helical microtubules of graphitic carbon.
Nature,
1991, 354: 56-58
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Helical microtubules of graphitic carbon&author=Iijima S&publication_year=1991&journal=Nature&volume=354&pages=56-58
[35]
Ebbesen
T W,
Ajayan
P M.
Large-scale synthesis of carbon nanotubes.
Nature,
1992, 358: 220-222
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Large-scale synthesis of carbon nanotubes&author=Ebbesen T W&author=Ajayan P M&publication_year=1992&journal=Nature&volume=358&pages=220-222
[36]
Iijima
S,
Ichihashi
T.
Single-shell carbon nanotubes of 1-nm diameter.
Nature,
1993, 363: 603-605
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Single-shell carbon nanotubes of 1-nm diameter&author=Iijima S&author=Ichihashi T&publication_year=1993&journal=Nature&volume=363&pages=603-605
[37]
Thess
A,
Lee
R,
Nikolaev
P.
Crystalline Ropes of Metallic Carbon Nanotubes.
Science,
1996, 273: 483-487
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Crystalline Ropes of Metallic Carbon Nanotubes&author=Thess A&author=Lee R&author=Nikolaev P&publication_year=1996&journal=Science&volume=273&pages=483-487
[38]
Guo
T,
Nikolaev
P,
Rinzler
A G.
Self-Assembly of Tubular Fullerenes.
J Phys Chem,
1995, 99: 10694-10697
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Self-Assembly of Tubular Fullerenes&author=Guo T&author=Nikolaev P&author=Rinzler A G&publication_year=1995&journal=J Phys Chem&volume=99&pages=10694-10697
[39]
Guo
T,
Nikolaev
P,
Thess
A.
Catalytic growth of single-walled manotubes by laser vaporization.
Chem Phys Lett,
1995, 243: 49-54
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Catalytic growth of single-walled manotubes by laser vaporization&author=Guo T&author=Nikolaev P&author=Thess A&publication_year=1995&journal=Chem Phys Lett&volume=243&pages=49-54
[40]
Li
W Z,
Xie
S S,
Qian
L X.
Large-Scale Synthesis of Aligned Carbon Nanotubes.
Science,
1996, 274: 1701-1703
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Large-Scale Synthesis of Aligned Carbon Nanotubes&author=Li W Z&author=Xie S S&author=Qian L X&publication_year=1996&journal=Science&volume=274&pages=1701-1703
[41]
Hata
K.
Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes.
Science,
2004, 306: 1362-1364
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes&author=Hata K&publication_year=2004&journal=Science&volume=306&pages=1362-1364
[42]
Zhang
Y G,
Chang
A,
Cao
J.
Electric-field-directed growth of aligned single-walled carbon nanotubes.
Appl Phys Lett,
2001, 79: 3155-3157
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Electric-field-directed growth of aligned single-walled carbon nanotubes&author=Zhang Y G&author=Chang A&author=Cao J&publication_year=2001&journal=Appl Phys Lett&volume=79&pages=3155-3157
[43]
Arnold
M S,
Green
A A,
Hulvat
J F.
Sorting carbon nanotubes by electronic structure using density differentiation.
Nat Nanotech,
2006, 1: 60-65
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sorting carbon nanotubes by electronic structure using density differentiation&author=Arnold M S&author=Green A A&author=Hulvat J F&publication_year=2006&journal=Nat Nanotech&volume=1&pages=60-65
[44]
Arnold
M S,
Stupp
S I,
Hersam
M C.
Enrichment of Single-Walled Carbon Nanotubes by Diameter in Density Gradients.
Nano Lett,
2005, 5: 713-718
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Enrichment of Single-Walled Carbon Nanotubes by Diameter in Density Gradients&author=Arnold M S&author=Stupp S I&author=Hersam M C&publication_year=2005&journal=Nano Lett&volume=5&pages=713-718
[45]
Green
A A,
Hersam
M C.
Properties and application of double-walled carbon nanotubes sorted by outer-wall electronic type..
ACS Nano,
2011, 5: 1459-1467
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Properties and application of double-walled carbon nanotubes sorted by outer-wall electronic type.&author=Green A A&author=Hersam M C&publication_year=2011&journal=ACS Nano&volume=5&pages=1459-1467
[46]
Green
A A,
Hersam
M C.
Processing and properties of highly enriched double-wall carbon nanotubes.
Nat Nanotech,
2009, 4: 64-70
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Processing and properties of highly enriched double-wall carbon nanotubes&author=Green A A&author=Hersam M C&publication_year=2009&journal=Nat Nanotech&volume=4&pages=64-70
[47]
Green
A A,
Hersam
M C.
Nearly single-chirality single-walled carbon nanotubes produced via orthogonal iterative density gradient ultracentrifugation..
Adv Mater,
2011, 23: 2185-2190
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nearly single-chirality single-walled carbon nanotubes produced via orthogonal iterative density gradient ultracentrifugation.&author=Green A A&author=Hersam M C&publication_year=2011&journal=Adv Mater&volume=23&pages=2185-2190
[48]
Antaris
A L,
Seo
J W T,
Green
A A.
Sorting single-walled carbon nanotubes by electronic type using nonionic, biocompatible block copolymers..
ACS Nano,
2010, 4: 4725-4732
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sorting single-walled carbon nanotubes by electronic type using nonionic, biocompatible block copolymers.&author=Antaris A L&author=Seo J W T&author=Green A A&publication_year=2010&journal=ACS Nano&volume=4&pages=4725-4732
[49]
Yang
F,
Wang
X,
Zhang
D.
Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts.
Nature,
2014, 510: 522-524
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts&author=Yang F&author=Wang X&author=Zhang D&publication_year=2014&journal=Nature&volume=510&pages=522-524
[50]
Yang
F,
Wang
X,
Si
J.
Water-Assisted Preparation of High-Purity Semiconducting (14,4) Carbon Nanotubes.
ACS Nano,
2017, 11: 186-193
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Water-Assisted Preparation of High-Purity Semiconducting (14,4) Carbon Nanotubes&author=Yang F&author=Wang X&author=Si J&publication_year=2017&journal=ACS Nano&volume=11&pages=186-193
[51]
Wang
J T,
Jin
X,
Liu
Z B.
Growing highly pure semiconducting carbon nanotubes by electrotwisting the helicity.
Nat Catal,
2018, 1: 326-331
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Growing highly pure semiconducting carbon nanotubes by electrotwisting the helicity&author=Wang J T&author=Jin X&author=Liu Z B&publication_year=2018&journal=Nat Catal&volume=1&pages=326-331
[52]
Hernandez
Y,
Nicolosi
V,
Lotya
M.
High-yield production of graphene by liquid-phase exfoliation of graphite.
Nat Nanotech,
2008, 3: 563-568
CrossRef
PubMed
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-yield production of graphene by liquid-phase exfoliation of graphite&author=Hernandez Y&author=Nicolosi V&author=Lotya M&publication_year=2008&journal=Nat Nanotech&volume=3&pages=563-568
[53]
Liu
N,
Luo
F,
Wu
H X.
One-Step Ionic-Liquid-Assisted Electrochemical Synthesis of Ionic-Liquid-Functionalized Graphene Sheets Directly from Graphite.
Adv Funct Mater,
2008, 18: 1518-1525
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=One-Step Ionic-Liquid-Assisted Electrochemical Synthesis of Ionic-Liquid-Functionalized Graphene Sheets Directly from Graphite&author=Liu N&author=Luo F&author=Wu H X&publication_year=2008&journal=Adv Funct Mater&volume=18&pages=1518-1525
[54]
Kosynkin
D V,
Higginbotham
A L,
Sinitskii
A.
Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons.
Nature,
2009, 458: 872-876
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons&author=Kosynkin D V&author=Higginbotham A L&author=Sinitskii A&publication_year=2009&journal=Nature&volume=458&pages=872-876
[55]
Jiao
L Y,
Zhang
L,
Wang
X R.
Narrow graphene nanoribbons from carbon nanotubes.
Nature,
2009, 458: 877-880
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Narrow graphene nanoribbons from carbon nanotubes&author=Jiao L Y&author=Zhang L&author=Wang X R&publication_year=2009&journal=Nature&volume=458&pages=877-880
[56]
Terrones
M,
Botello-Méndez
A R,
Campos-Delgado
J.
Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications.
Nano Today,
2010, 5: 351-372
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications&author=Terrones M&author=Botello-Méndez A R&author=Campos-Delgado J&publication_year=2010&journal=Nano Today&volume=5&pages=351-372
[57]
Yan
Q M,
Huang
B,
Yu
J.
Intrinsic Current-Voltage Characteristics of Graphene Nanoribbon Transistors and Effect of Edge Doping.
Nano Lett,
2007, 7: 1469-1473
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Intrinsic Current-Voltage Characteristics of Graphene Nanoribbon Transistors and Effect of Edge Doping&author=Yan Q M&author=Huang B&author=Yu J&publication_year=2007&journal=Nano Lett&volume=7&pages=1469-1473
[58]
Emtsev
K V,
Bostwick
A,
Horn
K.
Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide.
Nat Mater,
2009, 8: 203-207
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide&author=Emtsev K V&author=Bostwick A&author=Horn K&publication_year=2009&journal=Nat Mater&volume=8&pages=203-207
[59]
de Heer
W A,
Berger
C,
Ruan
M.
Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide.
Proc Natl Acad Sci USA,
2011, 108: 16900-16905
CrossRef
PubMed
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide&author=de Heer W A&author=Berger C&author=Ruan M&publication_year=2011&journal=Proc Natl Acad Sci USA&volume=108&pages=16900-16905
[60]
Somani
P R,
Somani
S P,
Umeno
M.
Planer nano-graphenes from camphor by CVD.
Chem Phys Lett,
2006, 430: 56-59
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Planer nano-graphenes from camphor by CVD&author=Somani P R&author=Somani S P&author=Umeno M&publication_year=2006&journal=Chem Phys Lett&volume=430&pages=56-59
[61]
Li
X S,
Cai
W W,
An
J.
Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils.
Science,
2009, 324: 1312-1314
CrossRef
PubMed
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils&author=Li X S&author=Cai W W&author=An J&publication_year=2009&journal=Science&volume=324&pages=1312-1314
[62]
Lee
S,
Lee
K,
Zhong
Z H.
Wafer Scale Homogeneous Bilayer Graphene Films by Chemical Vapor Deposition.
Nano Lett,
2010, 10: 4702-4707
CrossRef
PubMed
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wafer Scale Homogeneous Bilayer Graphene Films by Chemical Vapor Deposition&author=Lee S&author=Lee K&author=Zhong Z H&publication_year=2010&journal=Nano Lett&volume=10&pages=4702-4707
[63]
Gao
L B,
Ren
W C,
Xu
H L.
Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum.
Nat Commun,
2012, 3: 699
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum&author=Gao L B&author=Ren W C&author=Xu H L&publication_year=2012&journal=Nat Commun&volume=3&pages=699
[64]
Bae
S,
Kim
H,
Lee
Y.
Roll-to-roll production of 30-inch graphene films for transparent electrodes.
Nat Nanotech,
2010, 5: 574-578
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Roll-to-roll production of 30-inch graphene films for transparent electrodes&author=Bae S&author=Kim H&author=Lee Y&publication_year=2010&journal=Nat Nanotech&volume=5&pages=574-578
[65]
Pei
S,
Cheng
H M.
The reduction of graphene oxide.
Carbon,
2012, 50: 3210-3228
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The reduction of graphene oxide&author=Pei S&author=Cheng H M&publication_year=2012&journal=Carbon&volume=50&pages=3210-3228
[66]
Wang
H,
Xu
X Z,
Li
J Y.
Surface Monocrystallization of Copper Foil for Fast Growth of Large Single-Crystal Graphene under Free Molecular Flow..
Adv Mater,
2016, 28: 8968-8974
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Surface Monocrystallization of Copper Foil for Fast Growth of Large Single-Crystal Graphene under Free Molecular Flow.&author=Wang H&author=Xu X Z&author=Li J Y&publication_year=2016&journal=Adv Mater&volume=28&pages=8968-8974
[67]
Liu
C,
Xu
X Z,
Qiu
L.
Kinetic modulation of graphene growth by fluorine through spatially confined decomposition of metal fluorides..
Nat Chem,
2019, 11: 730-736
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kinetic modulation of graphene growth by fluorine through spatially confined decomposition of metal fluorides.&author=Liu C&author=Xu X Z&author=Qiu L&publication_year=2019&journal=Nat Chem&volume=11&pages=730-736
[68]
Xu
X Z,
Zhang
Z H,
Dong
J C.
Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil.
Sci Bull,
2017, 62: 1074-1080
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil&author=Xu X Z&author=Zhang Z H&author=Dong J C&publication_year=2017&journal=Sci Bull&volume=62&pages=1074-1080
[69]
Yan
Z,
Peng
Z W,
Casillas
G.
Rebar graphene..
ACS Nano,
2014, 8: 5061-5068
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Rebar graphene.&author=Yan Z&author=Peng Z W&author=Casillas G&publication_year=2014&journal=ACS Nano&volume=8&pages=5061-5068
[70]
Novaes
F D,
Rurali
R,
Ordejón
P.
Electronic transport between graphene layers covalently connected by carbon nanotubes..
ACS Nano,
2010, 4: 7596-7602
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Electronic transport between graphene layers covalently connected by carbon nanotubes.&author=Novaes F D&author=Rurali R&author=Ordejón P&publication_year=2010&journal=ACS Nano&volume=4&pages=7596-7602
[71]
Varshney
V,
Patnaik
S S,
Roy
A K.
Modeling of thermal transport in pillared-graphene architectures..
ACS Nano,
2010, 4: 1153-1161
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Modeling of thermal transport in pillared-graphene architectures.&author=Varshney V&author=Patnaik S S&author=Roy A K&publication_year=2010&journal=ACS Nano&volume=4&pages=1153-1161
[72]
Lin
X Y,
Liu
P,
Wei
Y.
Development of an ultra-thin film comprised of a graphene membrane and carbon nanotube vein support.
Nat Commun,
2013, 4: 2920
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Development of an ultra-thin film comprised of a graphene membrane and carbon nanotube vein support&author=Lin X Y&author=Liu P&author=Wei Y&publication_year=2013&journal=Nat Commun&volume=4&pages=2920
[73]
Cohen-Tanugi
D,
Grossman
J C.
Water Desalination across Nanoporous Graphene.
Nano Lett,
2012, 12: 3602-3608
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Water Desalination across Nanoporous Graphene&author=Cohen-Tanugi D&author=Grossman J C&publication_year=2012&journal=Nano Lett&volume=12&pages=3602-3608
[74]
Hong
T K,
Lee
D W,
Choi
H J.
Transparent, flexible conducting hybrid multilayer thin films of multiwalled carbon nanotubes with graphene nanosheets..
ACS Nano,
2010, 4: 3861-3868
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Transparent, flexible conducting hybrid multilayer thin films of multiwalled carbon nanotubes with graphene nanosheets.&author=Hong T K&author=Lee D W&author=Choi H J&publication_year=2010&journal=ACS Nano&volume=4&pages=3861-3868
[75]
Tristán-López
F,
Morelos-Gómez
A,
Vega-Díaz
S M.
Large area films of alternating graphene-carbon nanotube layers processed in water..
ACS Nano,
2013, 7: 10788-10798
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Large area films of alternating graphene-carbon nanotube layers processed in water.&author=Tristán-López F&author=Morelos-Gómez A&author=Vega-Díaz S M&publication_year=2013&journal=ACS Nano&volume=7&pages=10788-10798
[76]
Fan
Z J,
Yan
J,
Zhi
L J.
A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors..
Adv Mater,
2010, 22: 3723-3728
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors.&author=Fan Z J&author=Yan J&author=Zhi L J&publication_year=2010&journal=Adv Mater&volume=22&pages=3723-3728
[77]
Zhu
Y,
Li
L,
Zhang
C G.
A seamless three-dimensional carbon nanotube graphene hybrid material.
Nat Commun,
2012, 3: 1225
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A seamless three-dimensional carbon nanotube graphene hybrid material&author=Zhu Y&author=Li L&author=Zhang C G&publication_year=2012&journal=Nat Commun&volume=3&pages=1225
[78]
Yu
D S,
Goh
K,
Wang
H.
Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage.
Nat Nanotech,
2014, 9: 555-562
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage&author=Yu D S&author=Goh K&author=Wang H&publication_year=2014&journal=Nat Nanotech&volume=9&pages=555-562
[79]
Ando
T,
Nakanishi
T.
Impurity Scattering in Carbon Nanotubes Absence of Back Scattering.
J Phys Soc Jpn,
1998, 67: 1704-1713
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Impurity Scattering in Carbon Nanotubes Absence of Back Scattering&author=Ando T&author=Nakanishi T&publication_year=1998&journal=J Phys Soc Jpn&volume=67&pages=1704-1713
[80]
Bolotin
K I,
Sikes
K J,
Jiang
Z.
Ultrahigh electron mobility in suspended graphene.
Solid State Commun,
2008, 146: 351-355
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ultrahigh electron mobility in suspended graphene&author=Bolotin K I&author=Sikes K J&author=Jiang Z&publication_year=2008&journal=Solid State Commun&volume=146&pages=351-355
[81]
Gusynin
V P,
Sharapov
S G.
Unconventional Integer Quantum Hall Effect in Graphene.
Phys Rev Lett,
2005, 95: 146801
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Unconventional Integer Quantum Hall Effect in Graphene&author=Gusynin V P&author=Sharapov S G&publication_year=2005&journal=Phys Rev Lett&volume=95&pages=146801
[82]
Tworzyd?o
J,
Trauzettel
B,
Titov
M.
Sub-Poissonian Shot Noise in Graphene.
Phys Rev Lett,
2006, 96: 246802
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sub-Poissonian Shot Noise in Graphene&author=Tworzyd?o J&author=Trauzettel B&author=Titov M&publication_year=2006&journal=Phys Rev Lett&volume=96&pages=246802
[83]
Ziegler
K.
Robust Transport Properties in Graphene.
Phys Rev Lett,
2006, 97: 266802
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Robust Transport Properties in Graphene&author=Ziegler K&publication_year=2006&journal=Phys Rev Lett&volume=97&pages=266802
[84]
Han
M Y,
?zyilmaz
B,
Zhang
Y.
Energy Band-Gap Engineering of Graphene Nanoribbons.
Phys Rev Lett,
2007, 98: 206805
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Energy Band-Gap Engineering of Graphene Nanoribbons&author=Han M Y&author=?zyilmaz B&author=Zhang Y&publication_year=2007&journal=Phys Rev Lett&volume=98&pages=206805
[85]
Berger
C.
Electronic Confinement and Coherence in Patterned Epitaxial Graphene.
Science,
2006, 312: 1191-1196
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Electronic Confinement and Coherence in Patterned Epitaxial Graphene&author=Berger C&publication_year=2006&journal=Science&volume=312&pages=1191-1196
[86]
Schwierz
F.
Graphene transistors.
Nat Nanotech,
2010, 5: 487-496
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Graphene transistors&author=Schwierz F&publication_year=2010&journal=Nat Nanotech&volume=5&pages=487-496
[87]
Geim
A K,
Novoselov
K S.
The rise of graphene.
Nat Mater,
2007, 6: 183-191
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=The rise of graphene&author=Geim A K&author=Novoselov K S&publication_year=2007&journal=Nat Mater&volume=6&pages=183-191
[88]
Berger
C,
Song
Z,
Li
T.
Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics.
J Phys Chem B,
2004, 108: 19912-19916
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics&author=Berger C&author=Song Z&author=Li T&publication_year=2004&journal=J Phys Chem B&volume=108&pages=19912-19916
[89]
Lin
Y M,
Dimitrakopoulos
C,
Jenkins
K A.
100-GHz Transistors from Wafer-Scale Epitaxial Graphene.
Science,
2010, 327: 662-662
CrossRef
PubMed
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=100-GHz Transistors from Wafer-Scale Epitaxial Graphene&author=Lin Y M&author=Dimitrakopoulos C&author=Jenkins K A&publication_year=2010&journal=Science&volume=327&pages=662-662
[90]
Wu
Y Q,
Lin
Y M,
Bol
A A.
High-frequency, scaled graphene transistors on diamond-like carbon.
Nature,
2011, 472: 74-78
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-frequency, scaled graphene transistors on diamond-like carbon&author=Wu Y Q&author=Lin Y M&author=Bol A A&publication_year=2011&journal=Nature&volume=472&pages=74-78
[91]
Sire
C,
Ardiaca
F,
Lepilliet
S.
Flexible Gigahertz Transistors Derived from Solution-Based Single-Layer Graphene.
Nano Lett,
2012, 12: 1184-1188
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Flexible Gigahertz Transistors Derived from Solution-Based Single-Layer Graphene&author=Sire C&author=Ardiaca F&author=Lepilliet S&publication_year=2012&journal=Nano Lett&volume=12&pages=1184-1188
[92]
Kim
B J,
Lee
S K,
Kang
M S.
Coplanar-gate transparent graphene transistors and inverters on plastic..
ACS Nano,
2012, 6: 8646-8651
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Coplanar-gate transparent graphene transistors and inverters on plastic.&author=Kim B J&author=Lee S K&author=Kang M S&publication_year=2012&journal=ACS Nano&volume=6&pages=8646-8651
[93]
Li
S L,
Miyazaki
H,
Kumatani
A.
Low Operating Bias and Matched Input-Output Characteristics in Graphene Logic Inverters.
Nano Lett,
2010, 10: 2357-2362
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Low Operating Bias and Matched Input-Output Characteristics in Graphene Logic Inverters&author=Li S L&author=Miyazaki H&author=Kumatani A&publication_year=2010&journal=Nano Lett&volume=10&pages=2357-2362
[94]
Dürkop
T,
Getty
S A,
Cobas
E.
Extraordinary Mobility in Semiconducting Carbon Nanotubes.
Nano Lett,
2004, 4: 35-39
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Extraordinary Mobility in Semiconducting Carbon Nanotubes&author=Dürkop T&author=Getty S A&author=Cobas E&publication_year=2004&journal=Nano Lett&volume=4&pages=35-39
[95]
Bachtold
A.
Logic Circuits with Carbon Nanotube Transistors.
Science,
2001, 294: 1317-1320
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Logic Circuits with Carbon Nanotube Transistors&author=Bachtold A&publication_year=2001&journal=Science&volume=294&pages=1317-1320
[96]
Sun
D M,
Timmermans
M Y,
Tian
Y.
Flexible high-performance carbon nanotube integrated circuits.
Nat Nanotech,
2011, 6: 156-161
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Flexible high-performance carbon nanotube integrated circuits&author=Sun D M&author=Timmermans M Y&author=Tian Y&publication_year=2011&journal=Nat Nanotech&volume=6&pages=156-161
[97]
Sun
D M,
Timmermans
M Y,
Kaskela
A.
Mouldable all-carbon integrated circuits.
Nat Commun,
2013, 4: 2302
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mouldable all-carbon integrated circuits&author=Sun D M&author=Timmermans M Y&author=Kaskela A&publication_year=2013&journal=Nat Commun&volume=4&pages=2302
[98]
Derycke
V,
Martel
R,
Appenzeller
J.
Carbon Nanotube Inter- and Intramolecular Logic Gates.
Nano Lett,
2001, 1: 453-456
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Carbon Nanotube Inter- and Intramolecular Logic Gates&author=Derycke V&author=Martel R&author=Appenzeller J&publication_year=2001&journal=Nano Lett&volume=1&pages=453-456
[99]
Franklin
A D,
Luisier
M,
Han
S J.
Sub-10 nm Carbon Nanotube Transistor.
Nano Lett,
2012, 12: 758-762
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sub-10 nm Carbon Nanotube Transistor&author=Franklin A D&author=Luisier M&author=Han S J&publication_year=2012&journal=Nano Lett&volume=12&pages=758-762
[100]
Dong
X C,
Fu
D L,
Fang
W J.
Doping single-layer graphene with aromatic molecules..
Small,
2009, 5: 1422-1426
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Doping single-layer graphene with aromatic molecules.&author=Dong X C&author=Fu D L&author=Fang W J&publication_year=2009&journal=Small&volume=5&pages=1422-1426
[101]
Liu
Y,
Jin
Z,
Wang
J Y.
Nitrogen-Doped Single-Walled Carbon Nanotubes Grown on Substrates: Evidence for Framework Doping and Their Enhanced Properties.
Adv Funct Mater,
2011, 21: 986-992
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nitrogen-Doped Single-Walled Carbon Nanotubes Grown on Substrates: Evidence for Framework Doping and Their Enhanced Properties&author=Liu Y&author=Jin Z&author=Wang J Y&publication_year=2011&journal=Adv Funct Mater&volume=21&pages=986-992
[102]
Lv
R T,
Cui
T X,
Jun
M S.
Open-Ended, N-Doped Carbon Nanotube-Graphene Hybrid Nanostructures as High-Performance Catalyst Support.
Adv Funct Mater,
2011, 21: 999-1006
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Open-Ended, N-Doped Carbon Nanotube-Graphene Hybrid Nanostructures as High-Performance Catalyst Support&author=Lv R T&author=Cui T X&author=Jun M S&publication_year=2011&journal=Adv Funct Mater&volume=21&pages=999-1006
[103]
Lin
Y M,
Appenzeller
J,
Knoch
J.
High-Performance Carbon Nanotube Field-Effect Transistor With Tunable Polarities.
IEEE Trans Nanotechnol,
2005, 4: 481-489
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-Performance Carbon Nanotube Field-Effect Transistor With Tunable Polarities&author=Lin Y M&author=Appenzeller J&author=Knoch J&publication_year=2005&journal=IEEE Trans Nanotechnol&volume=4&pages=481-489
[104]
Yu
W J,
Kang
B R,
Lee
I H.
Majority carrier type conversion with floating gates in carbon nanotube transistors..
Adv Mater,
2009, 21: 4821-4824
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Majority carrier type conversion with floating gates in carbon nanotube transistors.&author=Yu W J&author=Kang B R&author=Lee I H&publication_year=2009&journal=Adv Mater&volume=21&pages=4821-4824
[105]
Nosho
Y,
Ohno
Y,
Kishimoto
S.
Relation between conduction property and work function of contact metal in carbon nanotube field-effect transistors.
Nanotechnology,
2006, 17: 3412-3415
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Relation between conduction property and work function of contact metal in carbon nanotube field-effect transistors&author=Nosho Y&author=Ohno Y&author=Kishimoto S&publication_year=2006&journal=Nanotechnology&volume=17&pages=3412-3415
[106]
Yamamoto
K,
Kamimura
T,
Matsumoto
K.
Nitrogen Doping of Single-Walled Carbon Nanotube by Using Mass-Separated Low-Energy Ion Beams.
Jpn J Appl Phys,
2005, 44: 1611-1614
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nitrogen Doping of Single-Walled Carbon Nanotube by Using Mass-Separated Low-Energy Ion Beams&author=Yamamoto K&author=Kamimura T&author=Matsumoto K&publication_year=2005&journal=Jpn J Appl Phys&volume=44&pages=1611-1614
[107]
Moriyama
N,
Ohno
Y,
Kitamura
T.
Change in carrier type in high-k gate carbon nanotube field-effect transistors by interface fixed charges.
Nanotechnology,
2010, 21: 165201
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Change in carrier type in high-k gate carbon nanotube field-effect transistors by interface fixed charges&author=Moriyama N&author=Ohno Y&author=Kitamura T&publication_year=2010&journal=Nanotechnology&volume=21&pages=165201
[108]
Liu
W,
Song
M S,
Kong
B.
Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives..
Adv Mater,
2017, 29: 1603436
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives.&author=Liu W&author=Song M S&author=Kong B&publication_year=2017&journal=Adv Mater&volume=29&pages=1603436
[109]
Khang
D Y.
A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates.
Science,
2006, 311: 208-212
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates&author=Khang D Y&publication_year=2006&journal=Science&volume=311&pages=208-212
[110]
Huang
J H,
Fang
J H,
Liu
C C.
Effective work function modulation of graphene/carbon nanotube composite films as transparent cathodes for organic optoelectronics..
ACS Nano,
2011, 5: 6262-6271
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Effective work function modulation of graphene/carbon nanotube composite films as transparent cathodes for organic optoelectronics.&author=Huang J H&author=Fang J H&author=Liu C C&publication_year=2011&journal=ACS Nano&volume=5&pages=6262-6271
[111]
Cao
Q,
Hur
S H,
Zhu
Z T.
Highly Bendable, Transparent Thin-Film Transistors That Use Carbon-Nanotube-Based Conductors and Semiconductors with Elastomeric Dielectrics.
Adv Mater,
2006, 18: 304-309
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Highly Bendable, Transparent Thin-Film Transistors That Use Carbon-Nanotube-Based Conductors and Semiconductors with Elastomeric Dielectrics&author=Cao Q&author=Hur S H&author=Zhu Z T&publication_year=2006&journal=Adv Mater&volume=18&pages=304-309
[112]
Aikawa
S,
Einarsson
E,
Thurakitseree
T.
Deformable transparent all-carbon-nanotube transistors.
Appl Phys Lett,
2012, 100: 063502
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deformable transparent all-carbon-nanotube transistors&author=Aikawa S&author=Einarsson E&author=Thurakitseree T&publication_year=2012&journal=Appl Phys Lett&volume=100&pages=063502
[113]
Tung
V C,
Chen
L M,
Allen
M J.
Low-Temperature Solution Processing of Graphene-Carbon Nanotube Hybrid Materials for High-Performance Transparent Conductors.
Nano Lett,
2009, 9: 1949-1955
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Low-Temperature Solution Processing of Graphene-Carbon Nanotube Hybrid Materials for High-Performance Transparent Conductors&author=Tung V C&author=Chen L M&author=Allen M J&publication_year=2009&journal=Nano Lett&volume=9&pages=1949-1955
[114]
Lu
R T,
Christianson
C,
Weintrub
B.
High photoresponse in hybrid graphene-carbon nanotube infrared detectors..
ACS Appl Mater Interfaces,
2013, 5: 11703-11707
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=High photoresponse in hybrid graphene-carbon nanotube infrared detectors.&author=Lu R T&author=Christianson C&author=Weintrub B&publication_year=2013&journal=ACS Appl Mater Interfaces&volume=5&pages=11703-11707
[115]
Kim
S H,
Song
W,
Jung
M W.
Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors..
Adv Mater,
2014, 26: 4247-4252
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors.&author=Kim S H&author=Song W&author=Jung M W&publication_year=2014&journal=Adv Mater&volume=26&pages=4247-4252
[116]
Peng
L W,
Feng
Y Y,
Lv
P.
Transparent, Conductive, and Flexible Multiwalled Carbon Nanotube/Graphene Hybrid Electrodes with Two Three-Dimensional Microstructures.
J Phys Chem C,
2012, 116: 4970-4978
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Transparent, Conductive, and Flexible Multiwalled Carbon Nanotube/Graphene Hybrid Electrodes with Two Three-Dimensional Microstructures&author=Peng L W&author=Feng Y Y&author=Lv P&publication_year=2012&journal=J Phys Chem C&volume=116&pages=4970-4978
[117]
Liu
Y J,
Liu
Y D,
Qin
S C.
Graphene-carbon nanotube hybrid films for high-performance flexible photodetectors.
Nano Res,
2017, 10: 1880-1887
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Graphene-carbon nanotube hybrid films for high-performance flexible photodetectors&author=Liu Y J&author=Liu Y D&author=Qin S C&publication_year=2017&journal=Nano Res&volume=10&pages=1880-1887
[118]
Liu
Y D,
Wang
F Q,
Wang
X M.
Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors.
Nat Commun,
2015, 6: 8589
CrossRef
PubMed
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors&author=Liu Y D&author=Wang F Q&author=Wang X M&publication_year=2015&journal=Nat Commun&volume=6&pages=8589
[119]
Jang
S,
Jang
H,
Lee
Y.
Flexible, transparent single-walled carbon nanotube transistors with graphene electrodes.
Nanotechnology,
2010, 21: 425201
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Flexible, transparent single-walled carbon nanotube transistors with graphene electrodes&author=Jang S&author=Jang H&author=Lee Y&publication_year=2010&journal=Nanotechnology&volume=21&pages=425201
[120]
Liu
Y D,
Wang
F Q,
Liu
Y J.
Charge transfer at carbon nanotube-graphene van der Waals heterojunctions.
Nanoscale,
2016, 8: 12883-12886
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Charge transfer at carbon nanotube-graphene van der Waals heterojunctions&author=Liu Y D&author=Wang F Q&author=Liu Y J&publication_year=2016&journal=Nanoscale&volume=8&pages=12883-12886
[121]
Kholmanov
I N,
Magnuson
C W,
Piner
R.
Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films..
Adv Mater,
2015, 27: 3053-3059
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films.&author=Kholmanov I N&author=Magnuson C W&author=Piner R&publication_year=2015&journal=Adv Mater&volume=27&pages=3053-3059
[122]
Yu
W J,
Lee
S Y,
Chae
S H.
Small Hysteresis Nanocarbon-Based Integrated Circuits on Flexible and Transparent Plastic Substrate.
Nano Lett,
2011, 11: 1344-1350
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Small Hysteresis Nanocarbon-Based Integrated Circuits on Flexible and Transparent Plastic Substrate&author=Yu W J&author=Lee S Y&author=Chae S H&publication_year=2011&journal=Nano Lett&volume=11&pages=1344-1350
[123]
Yu
W J,
Chae
S H,
Lee
S Y.
Ultra-transparent, flexible single-walled carbon nanotube non-volatile memory device with an oxygen-decorated graphene electrode..
Adv Mater,
2011, 23: 1889-1893
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ultra-transparent, flexible single-walled carbon nanotube non-volatile memory device with an oxygen-decorated graphene electrode.&author=Yu W J&author=Chae S H&author=Lee S Y&publication_year=2011&journal=Adv Mater&volume=23&pages=1889-1893
[124]
Jung
S,
Kim
J H,
Kim
J.
Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces..
Adv Mater,
2014, 26: 4825-4830
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces.&author=Jung S&author=Kim J H&author=Kim J&publication_year=2014&journal=Adv Mater&volume=26&pages=4825-4830
[125]
Wang
X W,
Gu
Y,
Xiong
Z P.
Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals..
Adv Mater,
2014, 26: 1336-1342
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals.&author=Wang X W&author=Gu Y&author=Xiong Z P&publication_year=2014&journal=Adv Mater&volume=26&pages=1336-1342
[126]
Park
J,
Lee
Y,
Hong
J.
Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins..
ACS Nano,
2014, 8: 4689-4697
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins.&author=Park J&author=Lee Y&author=Hong J&publication_year=2014&journal=ACS Nano&volume=8&pages=4689-4697
[127]
Yeom
C,
Chen
K,
Kiriya
D.
Large-area compliant tactile sensors using printed carbon nanotube active-matrix backplanes..
Adv Mater,
2015, 27: 1561-1566
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Large-area compliant tactile sensors using printed carbon nanotube active-matrix backplanes.&author=Yeom C&author=Chen K&author=Kiriya D&publication_year=2015&journal=Adv Mater&volume=27&pages=1561-1566
[128]
Zhu
B W,
Niu
Z Q,
Wang
H.
Microstructured graphene arrays for highly sensitive flexible tactile sensors..
Small,
2014, 10: 3625-3631
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Microstructured graphene arrays for highly sensitive flexible tactile sensors.&author=Zhu B W&author=Niu Z Q&author=Wang H&publication_year=2014&journal=Small&volume=10&pages=3625-3631
[129]
Bae
G Y,
Pak
S W,
Kim
D.
Linearly and Highly Pressure-Sensitive Electronic Skin Based on a Bioinspired Hierarchical Structural Array..
Adv Mater,
2016, 28: 5300-5306
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Linearly and Highly Pressure-Sensitive Electronic Skin Based on a Bioinspired Hierarchical Structural Array.&author=Bae G Y&author=Pak S W&author=Kim D&publication_year=2016&journal=Adv Mater&volume=28&pages=5300-5306
[130]
Sheng
L Z,
Liang
Y,
Jiang
L L.
Bubble-Decorated Honeycomb-Like Graphene Film as Ultrahigh Sensitivity Pressure Sensors.
Adv Funct Mater,
2015, 25: 6545-6551
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bubble-Decorated Honeycomb-Like Graphene Film as Ultrahigh Sensitivity Pressure Sensors&author=Sheng L Z&author=Liang Y&author=Jiang L L&publication_year=2015&journal=Adv Funct Mater&volume=25&pages=6545-6551
[131]
Yao
H B,
Ge
J,
Wang
C F.
A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design..
Adv Mater,
2013, 25: 6692-6698
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design.&author=Yao H B&author=Ge J&author=Wang C F&publication_year=2013&journal=Adv Mater&volume=25&pages=6692-6698
[132]
Jian
M Q,
Xia
K L,
Wang
Q.
Flexible and Highly Sensitive Pressure Sensors Based on Bionic Hierarchical Structures.
Adv Funct Mater,
2017, 27: 1606066
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Flexible and Highly Sensitive Pressure Sensors Based on Bionic Hierarchical Structures&author=Jian M Q&author=Xia K L&author=Wang Q&publication_year=2017&journal=Adv Funct Mater&volume=27&pages=1606066
[133]
Li
J H,
Li
W X,
Huang
W P.
Fabrication of highly reinforced and compressible graphene/carbon nanotube hybrid foams via a facile self-assembly process for application as strain sensors and beyond.
J Mater Chem C,
2017, 5: 2723-2730
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fabrication of highly reinforced and compressible graphene/carbon nanotube hybrid foams via a facile self-assembly process for application as strain sensors and beyond&author=Li J H&author=Li W X&author=Huang W P&publication_year=2017&journal=J Mater Chem C&volume=5&pages=2723-2730
[134]
Kim
K H,
Oh
Y,
Islam
M F.
Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue.
Nat Nanotech,
2012, 7: 562-566
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue&author=Kim K H&author=Oh Y&author=Islam M F&publication_year=2012&journal=Nat Nanotech&volume=7&pages=562-566
[135]
Sun
H Y,
Xu
Z,
Gao
C.
Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels..
Adv Mater,
2013, 25: 2554-2560
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels.&author=Sun H Y&author=Xu Z&author=Gao C&publication_year=2013&journal=Adv Mater&volume=25&pages=2554-2560
[136]
Li
X L,
Sha
J W,
Lee
S K.
Rivet Graphene.
ACS Nano,
2016, 10: 7307-7313
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Rivet Graphene&author=Li X L&author=Sha J W&author=Lee S K&publication_year=2016&journal=ACS Nano&volume=10&pages=7307-7313
[137]
Nguyen
D D,
Tai
N H,
Chen
S Y.
Controlled growth of carbon nanotube-graphene hybrid materials for flexible and transparent conductors and electron field emitters.
Nanoscale,
2012, 4: 632-638
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Controlled growth of carbon nanotube-graphene hybrid materials for flexible and transparent conductors and electron field emitters&author=Nguyen D D&author=Tai N H&author=Chen S Y&publication_year=2012&journal=Nanoscale&volume=4&pages=632-638
[138]
Lee
D H,
Kim
J E,
Han
T H.
Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant graphene films..
Adv Mater,
2010, 22: 1247-1252
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant graphene films.&author=Lee D H&author=Kim J E&author=Han T H&publication_year=2010&journal=Adv Mater&volume=22&pages=1247-1252
[139]
Lyth
S M,
Silva
S R P.
Field emission from multiwall carbon nanotubes on paper substrates.
Appl Phys Lett,
2007, 90: 173124
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Field emission from multiwall carbon nanotubes on paper substrates&author=Lyth S M&author=Silva S R P&publication_year=2007&journal=Appl Phys Lett&volume=90&pages=173124
[140]
Mani
V,
Devadas
B,
Chen
S M.
Direct electrochemistry of glucose oxidase at electrochemically reduced graphene oxide-multiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor..
Biosens Bioelectron,
2013, 41: 309-315
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Direct electrochemistry of glucose oxidase at electrochemically reduced graphene oxide-multiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor.&author=Mani V&author=Devadas B&author=Chen S M&publication_year=2013&journal=Biosens Bioelectron&volume=41&pages=309-315
[141]
Liu
F,
Piao
Y X,
Choi
K S.
Fabrication of free-standing graphene composite films as electrochemical biosensors.
Carbon,
2012, 50: 123-133
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fabrication of free-standing graphene composite films as electrochemical biosensors&author=Liu F&author=Piao Y X&author=Choi K S&publication_year=2012&journal=Carbon&volume=50&pages=123-133
[142]
Chen
H,
Qian
W Z,
Xie
Q.
Graphene-carbon nanotube hybrids as robust, rapid, reversible adsorbents for organics.
Carbon,
2017, 116: 409-414
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Graphene-carbon nanotube hybrids as robust, rapid, reversible adsorbents for organics&author=Chen H&author=Qian W Z&author=Xie Q&publication_year=2017&journal=Carbon&volume=116&pages=409-414
[143]
Gabor
N M,
Zhong
Z H,
Bosnick
K.
Extremely Efficient Multiple Electron-Hole Pair Generation in Carbon Nanotube Photodiodes.
Science,
2009, 325: 1367-1371
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Extremely Efficient Multiple Electron-Hole Pair Generation in Carbon Nanotube Photodiodes&author=Gabor N M&author=Zhong Z H&author=Bosnick K&publication_year=2009&journal=Science&volume=325&pages=1367-1371
[144]
Echtermeyer
T J,
Britnell
L,
Jasnos
P K.
Strong plasmonic enhancement of photovoltage in graphene.
Nat Commun,
2011, 2: 458
CrossRef
PubMed
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Strong plasmonic enhancement of photovoltage in graphene&author=Echtermeyer T J&author=Britnell L&author=Jasnos P K&publication_year=2011&journal=Nat Commun&volume=2&pages=458
[145]
Liu
Y,
Cheng
R,
Liao
L.
Plasmon resonance enhanced multicolour photodetection by graphene.
Nat Commun,
2011, 2: 579
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Plasmon resonance enhanced multicolour photodetection by graphene&author=Liu Y&author=Cheng R&author=Liao L&publication_year=2011&journal=Nat Commun&volume=2&pages=579
[146]
Lu
R T,
Shi
J J,
Baca
F J.
High performance multiwall carbon nanotube bolometers.
J Appl Phys,
2010, 108: 084305
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=High performance multiwall carbon nanotube bolometers&author=Lu R T&author=Shi J J&author=Baca F J&publication_year=2010&journal=J Appl Phys&volume=108&pages=084305
[147]
He
X W,
Léonard
F,
Kono
J.
Uncooled Carbon Nanotube Photodetectors.
Adv Opt Mater,
2015, 3: 989-1011
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Uncooled Carbon Nanotube Photodetectors&author=He X W&author=Léonard F&author=Kono J&publication_year=2015&journal=Adv Opt Mater&volume=3&pages=989-1011
[148]
Pei
T,
Xu
H T,
Zhang
Z Y.
Electronic transport in single-walled carbon nanotube/graphene junction.
Appl Phys Lett,
2011, 99: 113102
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Electronic transport in single-walled carbon nanotube/graphene junction&author=Pei T&author=Xu H T&author=Zhang Z Y&publication_year=2011&journal=Appl Phys Lett&volume=99&pages=113102
[149]
Pyo
S,
Kim
W,
Jung
H I.
Heterogeneous Integration of Carbon-Nanotube-Graphene for High-Performance, Flexible, and Transparent Photodetectors..
Small,
2017, 13: 1700918
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Heterogeneous Integration of Carbon-Nanotube-Graphene for High-Performance, Flexible, and Transparent Photodetectors.&author=Pyo S&author=Kim W&author=Jung H I&publication_year=2017&journal=Small&volume=13&pages=1700918
[150]
Velten
J,
Mozer
A J,
Li
D.
Carbon nanotube/graphene nanocomposite as efficient counter electrodes in dye-sensitized solar cells.
Nanotechnology,
2012, 23: 085201
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Carbon nanotube/graphene nanocomposite as efficient counter electrodes in dye-sensitized solar cells&author=Velten J&author=Mozer A J&author=Li D&publication_year=2012&journal=Nanotechnology&volume=23&pages=085201
[151]
Choi
H,
Kim
H,
Hwang
S.
Dye-sensitized solar cells using graphene-based carbon nano composite as counter electrode.
Sol Energy Mater Sol Cells,
2011, 95: 323-325
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dye-sensitized solar cells using graphene-based carbon nano composite as counter electrode&author=Choi H&author=Kim H&author=Hwang S&publication_year=2011&journal=Sol Energy Mater Sol Cells&volume=95&pages=323-325
[152]
Gan
X,
Lv
R,
Bai
J.
Efficient photovoltaic conversion of graphene-carbon nanotube hybrid films grown from solid precursors.
2D Mater,
2015, 2: 034003
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Efficient photovoltaic conversion of graphene-carbon nanotube hybrid films grown from solid precursors&author=Gan X&author=Lv R&author=Bai J&publication_year=2015&journal=2D Mater&volume=2&pages=034003
[153]
Chung
K,
Lee
C H,
Yi
G C.
Transferable GaN Layers Grown on ZnO-Coated Graphene Layers for Optoelectronic Devices.
Science,
2010, 330: 655-657
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Transferable GaN Layers Grown on ZnO-Coated Graphene Layers for Optoelectronic Devices&author=Chung K&author=Lee C H&author=Yi G C&publication_year=2010&journal=Science&volume=330&pages=655-657
[154]
Yoo
H,
Chung
K,
Choi
Y S.
Microstructures of GaN thin films grown on graphene layers..
Adv Mater,
2012, 24: 515-518
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Microstructures of GaN thin films grown on graphene layers.&author=Yoo H&author=Chung K&author=Choi Y S&publication_year=2012&journal=Adv Mater&volume=24&pages=515-518
[155]
Han
N,
Viet Cuong
T,
Han
M.
Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern.
Nat Commun,
2013, 4: 1452
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern&author=Han N&author=Viet Cuong T&author=Han M&publication_year=2013&journal=Nat Commun&volume=4&pages=1452
[156]
Lee
C H,
Kim
Y J,
Hong
Y J.
Flexible inorganic nanostructure light-emitting diodes fabricated on graphene films..
Adv Mater,
2011, 23: 4614-4619
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Flexible inorganic nanostructure light-emitting diodes fabricated on graphene films.&author=Lee C H&author=Kim Y J&author=Hong Y J&publication_year=2011&journal=Adv Mater&volume=23&pages=4614-4619
[157]
Seo
T H,
Park
A H,
Park
S.
Direct growth of GaN layer on carbon nanotube-graphene hybrid structure and its application for light emitting diodes.
Sci Rep,
2015, 5: 7747
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Direct growth of GaN layer on carbon nanotube-graphene hybrid structure and its application for light emitting diodes&author=Seo T H&author=Park A H&author=Park S&publication_year=2015&journal=Sci Rep&volume=5&pages=7747
[158]
Qin
S C,
Wang
F Q,
Liu
Y J.
A light-stimulated synaptic device based on graphene hybrid phototransistor.
2D Mater,
2017, 4: 035022
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=A light-stimulated synaptic device based on graphene hybrid phototransistor&author=Qin S C&author=Wang F Q&author=Liu Y J&publication_year=2017&journal=2D Mater&volume=4&pages=035022
[159]
Lee
M,
Lee
W,
Choi
S.
Brain-Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity..
Adv Mater,
2017, 29: 1700951
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Brain-Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity.&author=Lee M&author=Lee W&author=Choi S&publication_year=2017&journal=Adv Mater&volume=29&pages=1700951
[160]
Dai
S L,
Wu
X H,
Liu
D P.
Light-Stimulated Synaptic Devices Utilizing Interfacial Effect of Organic Field-Effect Transistors.
ACS Appl Mater Interfaces,
2018, 10: 21472-21480
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Light-Stimulated Synaptic Devices Utilizing Interfacial Effect of Organic Field-Effect Transistors&author=Dai S L&author=Wu X H&author=Liu D P&publication_year=2018&journal=ACS Appl Mater Interfaces&volume=10&pages=21472-21480
[161]
Qin
S C,
Chen
X Q,
Du
Q Q.
ACS Appl Mater Interfaces,
2018, 10: 38326-38333
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Qin S C&author=Chen X Q&author=Du Q Q&publication_year=2018&journal=ACS Appl Mater Interfaces&volume=10&pages=38326-38333
[162]
Qin
S C,
Jiang
H Z,
Du
Q Q.
Planar graphene-C60-graphene heterostructures for sensitive UV-Visible photodetection.
Carbon,
2019, 146: 486-490
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Planar graphene-C60-graphene heterostructures for sensitive UV-Visible photodetection&author=Qin S C&author=Jiang H Z&author=Du Q Q&publication_year=2019&journal=Carbon&volume=146&pages=486-490
[163]
Jnawali
G,
Rao
Y,
Beck
J H.
ACS Nano,
2015, 9: 7175-7185
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Jnawali G&author=Rao Y&author=Beck J H&publication_year=2015&journal=ACS Nano&volume=9&pages=7175-7185
[164]
Ojeda-Aristizabal
C,
Santos
E J G,
Onishi
S.
ACS Nano,
2017, 11: 4686-4693
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Ojeda-Aristizabal C&author=Santos E J G&author=Onishi S&publication_year=2017&journal=ACS Nano&volume=11&pages=4686-4693
[165]
Cheng
Q,
Tang
J,
Ma
J.
Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density.
Phys Chem Chem Phys,
2011, 13: 17615
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density&author=Cheng Q&author=Tang J&author=Ma J&publication_year=2011&journal=Phys Chem Chem Phys&volume=13&pages=17615
[166]
Izadi-Najafabadi
A,
Yasuda
S,
Kobashi
K.
Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density..
Adv Mater,
2010, 22: E235-E241
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density.&author=Izadi-Najafabadi A&author=Yasuda S&author=Kobashi K&publication_year=2010&journal=Adv Mater&volume=22&pages=E235-E241
[167]
Zhang
D S,
Yan
T T,
Shi
L Y.
Enhanced capacitive deionization performance of graphene/carbon nanotube composites.
J Mater Chem,
2012, 22: 14696
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Enhanced capacitive deionization performance of graphene/carbon nanotube composites&author=Zhang D S&author=Yan T T&author=Shi L Y&publication_year=2012&journal=J Mater Chem&volume=22&pages=14696
[168]
Yu
D S,
Dai
L M.
Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors.
J Phys Chem Lett,
2010, 1: 467-470
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors&author=Yu D S&author=Dai L M&publication_year=2010&journal=J Phys Chem Lett&volume=1&pages=467-470
[169]
Cheng
Q,
Tang
J,
Ma
J.
Graphene and nanostructured MnO2 composite electrodes for supercapacitors.
Carbon,
2011, 49: 2917-2925
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Graphene and nanostructured MnO2 composite electrodes for supercapacitors&author=Cheng Q&author=Tang J&author=Ma J&publication_year=2011&journal=Carbon&volume=49&pages=2917-2925
[170]
Yang
S Y,
Chang
K H,
Tien
H W.
Design and tailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors.
J Mater Chem,
2011, 21: 2374-2380
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Design and tailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors&author=Yang S Y&author=Chang K H&author=Tien H W&publication_year=2011&journal=J Mater Chem&volume=21&pages=2374-2380
[171]
Dimitrakakis
G K,
Tylianakis
E,
Froudakis
G E.
Pillared Graphene: A New 3-D Network Nanostructure for Enhanced Hydrogen Storage.
Nano Lett,
2008, 8: 3166-3170
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Pillared Graphene: A New 3-D Network Nanostructure for Enhanced Hydrogen Storage&author=Dimitrakakis G K&author=Tylianakis E&author=Froudakis G E&publication_year=2008&journal=Nano Lett&volume=8&pages=3166-3170
[172]
Mao
Y L,
Zhong
J X.
The computational design of junctions by carbon nanotube insertion into a graphene matrix.
New J Phys,
2009, 11: 093002
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=The computational design of junctions by carbon nanotube insertion into a graphene matrix&author=Mao Y L&author=Zhong J X&publication_year=2009&journal=New J Phys&volume=11&pages=093002
[173]
Du
F,
Yu
D S,
Dai
L M.
Preparation of Tunable 3D Pillared Carbon Nanotube-Graphene Networks for High-Performance Capacitance.
Chem Mater,
2011, 23: 4810-4816
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Preparation of Tunable 3D Pillared Carbon Nanotube-Graphene Networks for High-Performance Capacitance&author=Du F&author=Yu D S&author=Dai L M&publication_year=2011&journal=Chem Mater&volume=23&pages=4810-4816
[174]
Zhao
M Q,
Liu
X F,
Zhang
Q.
Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li-S batteries..
ACS Nano,
2012, 6: 10759-10769
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li-S batteries.&author=Zhao M Q&author=Liu X F&author=Zhang Q&publication_year=2012&journal=ACS Nano&volume=6&pages=10759-10769
[175]
Li
S S,
Luo
Y h,
Lv
W.
Vertically Aligned Carbon Nanotubes Grown on Graphene Paper as Electrodes in Lithium-Ion Batteries and Dye-Sensitized Solar Cells.
Adv Energy Mater,
2011, 1: 486-490
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Vertically Aligned Carbon Nanotubes Grown on Graphene Paper as Electrodes in Lithium-Ion Batteries and Dye-Sensitized Solar Cells&author=Li S S&author=Luo Y h&author=Lv W&publication_year=2011&journal=Adv Energy Mater&volume=1&pages=486-490
[176]
Bae
S H,
Karthikeyan
K,
Lee
Y S.
Microwave self-assembly of 3D graphene-carbon nanotube-nickel nanostructure for high capacity anode material in lithium ion battery.
Carbon,
2013, 64: 527-536
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Microwave self-assembly of 3D graphene-carbon nanotube-nickel nanostructure for high capacity anode material in lithium ion battery&author=Bae S H&author=Karthikeyan K&author=Lee Y S&publication_year=2013&journal=Carbon&volume=64&pages=527-536
[177]
Lv
R,
Cruz-Silva
E,
Terrones
M.
Building complex hybrid carbon architectures by covalent interconnections: graphene-nanotube hybrids and more..
ACS Nano,
2014, 8: 4061-4069
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Building complex hybrid carbon architectures by covalent interconnections: graphene-nanotube hybrids and more.&author=Lv R&author=Cruz-Silva E&author=Terrones M&publication_year=2014&journal=ACS Nano&volume=8&pages=4061-4069