References
[1]
Song
R Z,
Xiao
W D,
Sun
C Y.
A new self-learning optimal control laws for a class of discrete-time nonlinear systems based on ESN architecture.
Sci China Inf Sci,
2014, 57: 1-10
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A new self-learning optimal control laws for a class of discrete-time nonlinear systems based on ESN architecture&author=Song R Z&author=Xiao W D&author=Sun C Y&publication_year=2014&journal=Sci China Inf Sci&volume=57&pages=1-10
[2]
Li
C,
Zhang
E,
Jiu
L.
Optimal control on special Euclidean group via natural gradient algorithm.
Sci China Inf Sci,
2016, 59: 112203
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Optimal control on special Euclidean group via natural gradient algorithm&author=Li C&author=Zhang E&author=Jiu L&publication_year=2016&journal=Sci China Inf Sci&volume=59&pages=112203
[3]
Wei
W N.
Maximum principle for optimal control of neutral stochastic functional differential systems.
Sci China Math,
2015, 58: 1265-1284
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Maximum principle for optimal control of neutral stochastic functional differential systems&author=Wei W N&publication_year=2015&journal=Sci China Math&volume=58&pages=1265-1284
[4]
Lee
J H.
Model predictive control: Review of the three decades of development.
Int J Control Autom Syst,
2011, 9: 415-424
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Model predictive control: Review of the three decades of development&author=Lee J H&publication_year=2011&journal=Int J Control Autom Syst&volume=9&pages=415-424
[5]
Bequette
B W.
Nonlinear control of chemical processes: a review.
Ind Eng Chem Res,
1991, 30: 1391-1413
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nonlinear control of chemical processes: a review&author=Bequette B W&publication_year=1991&journal=Ind Eng Chem Res&volume=30&pages=1391-1413
[6]
Mayne
D Q,
Rawlings
J B,
Rao
C V.
Constrained model predictive control: Stability and optimality.
Automatica,
2000, 36: 789-814
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Constrained model predictive control: Stability and optimality&author=Mayne D Q&author=Rawlings J B&author=Rao C V&publication_year=2000&journal=Automatica&volume=36&pages=789-814
[7]
Hu
L S,
Huang
B,
Cao
Y Y.
Robust Digital Model Predictive Control for Linear Uncertain Systems With Saturations.
IEEE Trans Automat Contr,
2004, 49: 792-796
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Robust Digital Model Predictive Control for Linear Uncertain Systems With Saturations&author=Hu L S&author=Huang B&author=Cao Y Y&publication_year=2004&journal=IEEE Trans Automat Contr&volume=49&pages=792-796
[8]
Evans
M,
Cannon
M,
Kouvaritakis
B.
Robust and stochastic linear MPC for systems subject to multiplicative uncertainty.
IFAC Proc Volumes,
2012, 45: 335-341
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Robust and stochastic linear MPC for systems subject to multiplicative uncertainty&author=Evans M&author=Cannon M&author=Kouvaritakis B&publication_year=2012&journal=IFAC Proc Volumes&volume=45&pages=335-341
[9]
Fang
H,
Shang
C,
Chen
J.
An optimization-based shared control framework with applications in multi-robot systems.
Sci China Inf Sci,
2018, 61: 014201
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=An optimization-based shared control framework with applications in multi-robot systems&author=Fang H&author=Shang C&author=Chen J&publication_year=2018&journal=Sci China Inf Sci&volume=61&pages=014201
[10]
Zhou
L,
Jia
L,
Wang
Y L.
A robust integrated model predictive iterative learning control strategy for batch processes.
Sci China Inf Sci,
2019, 62: 219202
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A robust integrated model predictive iterative learning control strategy for batch processes&author=Zhou L&author=Jia L&author=Wang Y L&publication_year=2019&journal=Sci China Inf Sci&volume=62&pages=219202
[11]
Aguilera
R P,
Lezana
P,
Quevedo
D E.
Switched Model Predictive Control for Improved Transient and Steady-State Performance.
IEEE Trans Ind Inf,
2015, 11: 968-977
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Switched Model Predictive Control for Improved Transient and Steady-State Performance&author=Aguilera R P&author=Lezana P&author=Quevedo D E&publication_year=2015&journal=IEEE Trans Ind Inf&volume=11&pages=968-977
[12]
Venkat
A N,
Hiskens
I A,
Rawlings
J B.
Distributed MPC Strategies With Application to Power System Automatic Generation Control.
IEEE Trans Contr Syst Technol,
2008, 16: 1192-1206
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Distributed MPC Strategies With Application to Power System Automatic Generation Control&author=Venkat A N&author=Hiskens I A&author=Rawlings J B&publication_year=2008&journal=IEEE Trans Contr Syst Technol&volume=16&pages=1192-1206
[13]
Bertsekas
D P.
Dynamic Programming and Suboptimal Control: A Survey from ADP to MPC*.
Eur J Control,
2005, 11: 310-334
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dynamic Programming and Suboptimal Control: A Survey from ADP to MPC*&author=Bertsekas D P&publication_year=2005&journal=Eur J Control&volume=11&pages=310-334
[14]
Wei
Q L,
Liu
D R.
A novel policy iteration based deterministic Q-learning for discrete-time nonlinear systems.
Sci China Inf Sci,
2015, 58: 1-15
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A novel policy iteration based deterministic Q-learning for discrete-time nonlinear systems&author=Wei Q L&author=Liu D R&publication_year=2015&journal=Sci China Inf Sci&volume=58&pages=1-15
[15]
Wang
D,
Mu
C.
Developing nonlinear adaptive optimal regulators through an improved neural learning mechanism.
Sci China Inf Sci,
2017, 60: 058201
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Developing nonlinear adaptive optimal regulators through an improved neural learning mechanism&author=Wang D&author=Mu C&publication_year=2017&journal=Sci China Inf Sci&volume=60&pages=058201
[16]
Ding
D,
Wang
Z,
Han
Q L.
Neural-Network-Based Output-Feedback Control Under Round-Robin Scheduling Protocols..
IEEE Trans Cybern,
2019, 49: 2372-2384
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Neural-Network-Based Output-Feedback Control Under Round-Robin Scheduling Protocols.&author=Ding D&author=Wang Z&author=Han Q L&publication_year=2019&journal=IEEE Trans Cybern&volume=49&pages=2372-2384
[17]
Ernst
D,
Glavic
M,
Capitanescu
F.
Reinforcement learning versus model predictive control: a comparison on a power system problem..
IEEE Trans Syst Man Cybern B,
2009, 39: 517-529
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Reinforcement learning versus model predictive control: a comparison on a power system problem.&author=Ernst D&author=Glavic M&author=Capitanescu F&publication_year=2009&journal=IEEE Trans Syst Man Cybern B&volume=39&pages=517-529
[18]
G?rges
D.
Relations between Model Predictive Control and Reinforcement Learning.
IFAC-PapersOnLine,
2017, 50: 4920-4928
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Relations between Model Predictive Control and Reinforcement Learning&author=G?rges D&publication_year=2017&journal=IFAC-PapersOnLine&volume=50&pages=4920-4928
[19]
Lian
C,
Xu
X,
Chen
H.
Near-Optimal Tracking Control of Mobile Robots Via Receding-Horizon Dual Heuristic Programming..
IEEE Trans Cybern,
2016, 46: 2484-2496
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Near-Optimal Tracking Control of Mobile Robots Via Receding-Horizon Dual Heuristic Programming.&author=Lian C&author=Xu X&author=Chen H&publication_year=2016&journal=IEEE Trans Cybern&volume=46&pages=2484-2496
[20]
Xu
X,
Chen
H,
Lian
C.
Learning-Based Predictive Control for Discrete-Time Nonlinear Systems With Stochastic Disturbances..
IEEE Trans Neural Netw Learning Syst,
2018, 29: 6202-6213
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Learning-Based Predictive Control for Discrete-Time Nonlinear Systems With Stochastic Disturbances.&author=Xu X&author=Chen H&author=Lian C&publication_year=2018&journal=IEEE Trans Neural Netw Learning Syst&volume=29&pages=6202-6213
[21]
Dong
L,
Yan
J,
Yuan
X.
Functional Nonlinear Model Predictive Control Based on Adaptive Dynamic Programming..
IEEE Trans Cybern,
2019, 49: 4206-4218
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Functional Nonlinear Model Predictive Control Based on Adaptive Dynamic Programming.&author=Dong L&author=Yan J&author=Yuan X&publication_year=2019&journal=IEEE Trans Cybern&volume=49&pages=4206-4218
[22]
Anta
A,
Tabuada
P.
To Sample or not to Sample: Self-Triggered Control for Nonlinear Systems.
IEEE Trans Automat Contr,
2010, 55: 2030-2042
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=To Sample or not to Sample: Self-Triggered Control for Nonlinear Systems&author=Anta A&author=Tabuada P&publication_year=2010&journal=IEEE Trans Automat Contr&volume=55&pages=2030-2042
[23]
Lemmon M D. Event-triggered feedback in control, estimation, and optimization. In: Networked Control Systems. London: Springer, 2010. 293--358.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lemmon M D. Event-triggered feedback in control, estimation, and optimization. In: Networked Control Systems. London: Springer, 2010. 293--358&
[24]
Event-triggered optimal adaptive control algorithm for continuous-time nonlinear systems.
IEEE/CAA J Autom Sin,
2014, 1: 282-293
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Event-triggered optimal adaptive control algorithm for continuous-time nonlinear systems&publication_year=2014&journal=IEEE/CAA J Autom Sin&volume=1&pages=282-293
[25]
Duan
G,
Xiao
F,
Wang
L.
Hybrid event- and time-triggered control for double-integrator heterogeneous networks.
Sci China Inf Sci,
2019, 62: 022203
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hybrid event- and time-triggered control for double-integrator heterogeneous networks&author=Duan G&author=Xiao F&author=Wang L&publication_year=2019&journal=Sci China Inf Sci&volume=62&pages=022203
[26]
Zhang
X M,
Han
Q L.
Event-triggered dynamic output feedback control for networked control systems.
IET Control Theor Appl,
2014, 8: 226-234
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Event-triggered dynamic output feedback control for networked control systems&author=Zhang X M&author=Han Q L&publication_year=2014&journal=IET Control Theor Appl&volume=8&pages=226-234
[27]
Zhang
B L,
Han
Q L,
Zhang
X M.
Event-triggered H$_{}$ reliable control for offshore structures in network environments.
J Sound Vib,
2016, 368: 1-21
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Event-triggered H$_{}$ reliable control for offshore structures in network environments&author=Zhang B L&author=Han Q L&author=Zhang X M&publication_year=2016&journal=J Sound Vib&volume=368&pages=1-21
[28]
Zhang
X M,
Han
Q L.
A Decentralized Event-Triggered Dissipative Control Scheme for Systems With Multiple Sensors to Sample the System Outputs..
IEEE Trans Cybern,
2016, 46: 2745-2757
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Decentralized Event-Triggered Dissipative Control Scheme for Systems With Multiple Sensors to Sample the System Outputs.&author=Zhang X M&author=Han Q L&publication_year=2016&journal=IEEE Trans Cybern&volume=46&pages=2745-2757
[29]
Liu
C,
Gao
J,
Li
H.
Aperiodic Robust Model Predictive Control for Constrained Continuous-Time Nonlinear Systems: An Event-Triggered Approach..
IEEE Trans Cybern,
2018, 48: 1397-1405
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Aperiodic Robust Model Predictive Control for Constrained Continuous-Time Nonlinear Systems: An Event-Triggered Approach.&author=Liu C&author=Gao J&author=Li H&publication_year=2018&journal=IEEE Trans Cybern&volume=48&pages=1397-1405
[30]
Li
H,
Shi
Y.
Event-triggered robust model predictive control of continuous-time nonlinear systems.
Automatica,
2014, 50: 1507-1513
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Event-triggered robust model predictive control of continuous-time nonlinear systems&author=Li H&author=Shi Y&publication_year=2014&journal=Automatica&volume=50&pages=1507-1513
[31]
Ding
D,
Han
Q L,
Wang
Z.
A Survey on Model-Based Distributed Control and Filtering for Industrial Cyber-Physical Systems.
IEEE Trans Ind Inf,
2019, 15: 2483-2499
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Survey on Model-Based Distributed Control and Filtering for Industrial Cyber-Physical Systems&author=Ding D&author=Han Q L&author=Wang Z&publication_year=2019&journal=IEEE Trans Ind Inf&volume=15&pages=2483-2499
[32]
Krichman
M,
Sontag
E D,
Wang
Y.
Input-Output-to-State Stability.
SIAM J Control Optim,
2001, 39: 1874-1928
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Input-Output-to-State Stability&author=Krichman M&author=Sontag E D&author=Wang Y&publication_year=2001&journal=SIAM J Control Optim&volume=39&pages=1874-1928
[33]
Tabuada
P.
Event-Triggered Real-Time Scheduling of Stabilizing Control Tasks.
IEEE Trans Automat Contr,
2007, 52: 1680-1685
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Event-Triggered Real-Time Scheduling of Stabilizing Control Tasks&author=Tabuada P&publication_year=2007&journal=IEEE Trans Automat Contr&volume=52&pages=1680-1685
[34]
Heydari
A,
Balakrishnan
S N.
Finite-horizon control-constrained nonlinear optimal control using single network adaptive critics..
IEEE Trans Neural Netw Learning Syst,
2013, 24: 145-157
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Finite-horizon control-constrained nonlinear optimal control using single network adaptive critics.&author=Heydari A&author=Balakrishnan S N&publication_year=2013&journal=IEEE Trans Neural Netw Learning Syst&volume=24&pages=145-157
[35]
Khalil H K. Nonlinear Systems. New Jersey: Prentice Hall, 2002.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Khalil H K. Nonlinear Systems. New Jersey: Prentice Hall, 2002&
[36]
Dong
L,
Zhong
X,
Sun
C.
Event-Triggered Adaptive Dynamic Programming for Continuous-Time Systems With Control Constraints..
IEEE Trans Neural Netw Learning Syst,
2017, 28: 1941-1952
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Event-Triggered Adaptive Dynamic Programming for Continuous-Time Systems With Control Constraints.&author=Dong L&author=Zhong X&author=Sun C&publication_year=2017&journal=IEEE Trans Neural Netw Learning Syst&volume=28&pages=1941-1952
[37]
Zhong
X,
He
H.
An Event-Triggered ADP Control Approach for Continuous-Time System With Unknown Internal States..
IEEE Trans Cybern,
2017, 47: 683-694
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=An Event-Triggered ADP Control Approach for Continuous-Time System With Unknown Internal States.&author=Zhong X&author=He H&publication_year=2017&journal=IEEE Trans Cybern&volume=47&pages=683-694
[38]
Chen H. Model Predictive Control. Beijing: Sci Press, 2013.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chen H. Model Predictive Control. Beijing: Sci Press, 2013&