logo

SCIENCE CHINA Information Sciences, Volume 62 , Issue 12 : 220401(2019) https://doi.org/10.1007/s11432-019-2651-x

Recent progress in devices and circuits based on wafer-scale transitionmetal dichalcogenides

More info
  • ReceivedJul 25, 2019
  • AcceptedSep 18, 2019
  • PublishedNov 12, 2019

Abstract


Acknowledgment

This work was supported by National Key Research and Development Program (Grant No. 2016-YFA0203900), Shanghai Municipal Science and Technology Commission (Grant No. 18JC1410300), and National Natural Science Foundation of China (Grant No. 61874154).


References

[1] Liu Y, Weiss N O, Duan X. Van der Waals heterostructures and devices. Nat Rev Mater, 2016, 1: 16042 CrossRef ADS Google Scholar

[2] Chhowalla M, Liu Z, Zhang H. Two-dimensional transition metal dichalcogenide (TMD) nanosheets.. Chem Soc Rev, 2015, 44: 2584-2586 CrossRef PubMed Google Scholar

[3] Wang F, Zhang Y, Gao Y. 2D Metal Chalcogenides for IR Photodetection.. Small, 2019, 15: 1901347 CrossRef PubMed Google Scholar

[4] Cai Z, Liu B, Zou X. Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures.. Chem Rev, 2018, 118: 6091-6133 CrossRef PubMed Google Scholar

[5] Xie C, Mak C, Tao X. Photodetectors Based on Two-Dimensional Layered Materials Beyond Graphene. Adv Funct Mater, 2017, 27: 1603886 CrossRef Google Scholar

[6] Radisavljevic B, Radenovic A, Brivio J. Single-layer MoS$_{2}$ transistors. Nat Nanotechnol, 2011, 6: 147-150 CrossRef PubMed ADS Google Scholar

[7] Butler S Z, Hollen S M, Cao L. Progress, challenges, and opportunities in two-dimensional materials beyond graphene.. ACS Nano, 2013, 7: 2898-2926 CrossRef PubMed Google Scholar

[8] Yu L, El-Damak D, Radhakrishna U. Design, Modeling, and Fabrication of Chemical Vapor Deposition Grown MoS2Circuits with E-Mode FETs for Large-Area Electronics. Nano Lett, 2016, 16: 6349-6356 CrossRef PubMed ADS Google Scholar

[9] Wachter S, Polyushkin D K, Bethge O. A microprocessor based on a two-dimensional semiconductor. Nat Commun, 2017, 8: 14948 CrossRef PubMed ADS arXiv Google Scholar

[10] Liu C, Yan X, Song X. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat Nanotechnol, 2018, 13: 404-410 CrossRef PubMed ADS Google Scholar

[11] Liu C, Chen H, Hou X. Small footprint transistor architecture for photoswitching logic and in situ memory. Nat Nanotechnol, 2019, 14: 662-667 CrossRef PubMed ADS Google Scholar

[12] Lan Y W, Chen P C, Lin Y Y. Scalable fabrication of a complementary logic inverter based on MoS2 fin-shaped field effect transistors. Nanoscale Horiz, 2019, 4: 683-688 CrossRef ADS Google Scholar

[13] Chhowalla M, Shin H S, Eda G. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem, 2013, 5: 263-275 CrossRef PubMed ADS Google Scholar

[14] Shivayogimath A, Thomsen J D, Mackenzie D M A. A universal approach for the synthesis of two-dimensional binary compounds. Nat Commun, 2019, 10: 2957 CrossRef PubMed ADS arXiv Google Scholar

[15] Wang Y, Li L, Yao W. Monolayer PtSe2, a New Semiconducting Transition-Metal-Dichalcogenide, Epitaxially Grown by Direct Selenization of Pt. Nano Lett, 2015, 15: 4013-4018 CrossRef PubMed ADS Google Scholar

[16] He Q, Li P, Wu Z. Adv Mater, 2019, 349: 1901578 CrossRef PubMed Google Scholar

[17] Ciarrocchi A, Avsar A, Ovchinnikov D. Thickness-modulated metal-to-semiconductor transformation in a transition metal dichalcogenide. Nat Commun, 2018, 9: 919 CrossRef PubMed ADS Google Scholar

[18] Baugher B W H, Churchill H O H, Yang Y. Intrinsic Electronic Transport Properties of High-Quality Monolayer and Bilayer MoS2. Nano Lett, 2013, 13: 4212-4216 CrossRef PubMed ADS Google Scholar

[19] Li H, Wu J, Yin Z. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS? and WSe? nanosheets.. Acc Chem Res, 2014, 47: 1067-1075 CrossRef PubMed Google Scholar

[20] Mak K F, Lee C, Hone J. Atomically Thin MoS$_{2}$: A New Direct-Gap Semiconductor. Phys Rev Lett, 2010, 105: 136805 CrossRef PubMed ADS arXiv Google Scholar

[21] Zhang Y, Ye J, Matsuhashi Y. Ambipolar MoS2Thin Flake Transistors. Nano Lett, 2012, 12: 1136-1140 CrossRef PubMed ADS Google Scholar

[22] Martin S J, Walker A B, Campbell A J. Electrical transport characteristics of single-layer organic devices from theory and experiment. J Appl Phys, 2005, 98: 063709 CrossRef ADS Google Scholar

[23] Qian X, Liu J, Fu L. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science, 2014, 346: 1344-1347 CrossRef PubMed ADS Google Scholar

[24] Li D, Chen M, Sun Z. Two-dimensional non-volatile programmable p-n junctions. Nat Nanotechnol, 2017, 12: 901-906 CrossRef PubMed ADS Google Scholar

[25] Gao Y, Liu Z, Sun D M. Large-area synthesis of high-quality and uniform monolayer WS$_{2}$ on reusable Au foils. Nat Commun, 2015, 6: 8569 CrossRef PubMed ADS Google Scholar

[26] Lee Y H, Zhang X Q, Zhang W. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition.. Adv Mater, 2012, 24: 2320-2325 CrossRef PubMed Google Scholar

[27] Xu H, Zhang H, Guo Z. High-performance wafer-scale MoS$_{2}$ transistors toward practical application. Small, 2018, 14: 1803465 CrossRef PubMed Google Scholar

[28] Xu H, Zhang H, Liu Y. Controlled doping of wafer-scale PtSe$_{2}$ films for device application. Adv Funct Mater, 2019, 29: 1805614 CrossRef Google Scholar

[29] Fu D, Zhao X, Zhang Y Y. Molecular Beam Epitaxy of Highly Crystalline Monolayer Molybdenum Disulfide on Hexagonal Boron Nitride.. J Am Chem Soc, 2017, 139: 9392-9400 CrossRef PubMed Google Scholar

[30] Poh S M, Zhao X, Tan S J R. Molecular beam epitaxy of highly crystalline MoSe$_{2}$ on hexagonal boron nitride. ACS Nano, 2018, 12: 7562-7570 CrossRef Google Scholar

[31] Nakano M, Wang Y, Kashiwabara Y. Layer-by-Layer Epitaxial Growth of Scalable WSe2 on Sapphire by Molecular Beam Epitaxy. Nano Lett, 2017, 17: 5595-5599 CrossRef PubMed ADS arXiv Google Scholar

[32] Kang K, Xie S, Huang L. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature, 2015, 520: 656-660 CrossRef PubMed ADS Google Scholar

[33] Zhang X, Choudhury T H, Chubarov M. Diffusion-Controlled Epitaxy of Large Area Coalesced WSe2 Monolayers on Sapphire. Nano Lett, 2018, 18: 1049-1056 CrossRef PubMed ADS Google Scholar

[34] Song J G, Park J, Lee W. Layer-controlled, wafer-scale, and conformal synthesis of tungsten disulfide nanosheets using atomic layer deposition.. ACS Nano, 2013, 7: 11333-11340 CrossRef PubMed Google Scholar

[35] Shi M L, Chen L, Zhang T B. Top-Down Integration of Molybdenum Disulfide Transistors with Wafer-Scale Uniformity and Layer Controllability.. Small, 2017, 13: 1603157 CrossRef PubMed Google Scholar

[36] Yang P, Zou X, Zhang Z. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat Commun, 2018, 9: 979 CrossRef PubMed ADS Google Scholar

[37] Mak K F, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat Photon, 2016, 10: 216-226 CrossRef ADS Google Scholar

[38] Gong C, Hu K, Wang X. 2D Nanomaterial Arrays for Electronics and Optoelectronics. Adv Funct Mater, 2018, 28: 1706559 CrossRef Google Scholar

[39] Xia F, Wang H, Xiao D. Two-dimensional material nanophotonics. Nat Photon, 2014, 8: 899-907 CrossRef ADS arXiv Google Scholar

[40] Huo N, Konstantatos G. Recent Progress and Future Prospects of 2D-Based Photodetectors.. Adv Mater, 2018, 30: 1801164 CrossRef PubMed Google Scholar

[41] Lei S, Wen F, Li B. Optoelectronic Memory Using Two-Dimensional Materials. Nano Lett, 2015, 15: 259-265 CrossRef PubMed ADS Google Scholar

[42] Kshirsagar C U, Xu W, Su Y. Dynamic memory cells using MoS$_{2}$ field-effect transistors demonstrating femtoampere leakage currents. ACS Nano, 2016, 10: 8457-8464 CrossRef Google Scholar

[43] Zhang E, Wang W, Zhang C. Tunable charge-trap memory based on few-layer MoS2.. ACS Nano, 2015, 9: 612-619 CrossRef PubMed Google Scholar

[44] Wang X, Liu C, Chen Y. Ferroelectric FET for nonvolatile memory application with two-dimensional MoSe$_{2}$ channels. 2D Mater, 2017, 4: 025036 CrossRef ADS Google Scholar

[45] Wang H, Yu L, Lee Y H. Integrated Circuits Based on Bilayer MoS2Transistors. Nano Lett, 2012, 12: 4674-4680 CrossRef PubMed ADS arXiv Google Scholar

[46] Lee Y, Park S, Kim H. Characterization of the structural defects in CVD-grown monolayered MoS$_{2}$ using near-field photoluminescence imaging. Nanoscale, 2015, 7: 11909-11914 CrossRef PubMed ADS Google Scholar

[47] van der Zande A M, Huang P Y, Chenet D A. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat Mater, 2013, 12: 554-561 CrossRef PubMed ADS arXiv Google Scholar

[48] Yu H, Liao M, Zhao W. Wafer-scale growth and transfer of highly-oriented monolayer MoS$_{2}$ continuous films. ACS Nano, 2017, 11: 12001-12007 CrossRef Google Scholar

[49] Karvonen L, S?yn?tjoki A, Huttunen M J. Rapid visualization of grain boundaries in monolayer MoS$_{2}$ by multiphoton microscopy. Nat Commun, 2017, 8: 15714 CrossRef PubMed ADS Google Scholar

[50] Najmaei S, Liu Z, Zhou W. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat Mater, 2013, 12: 754-759 CrossRef PubMed ADS Google Scholar

[51] Liu Z, Amani M, Najmaei S. Strain and structure heterogeneity in MoS$_{2}$ atomic layers grown by chemical vapour deposition. Nat Commun, 2014, 5: 5246 CrossRef PubMed ADS Google Scholar

[52] Fei L, Lei S, Zhang W B. Direct TEM observations of growth mechanisms of two-dimensional MoS$_{2}$ flakes. Nat Commun, 2016, 7: 12206 CrossRef PubMed ADS Google Scholar

[53] Smithe K K H, Suryavanshi S V, Mu?oz Rojo M. Low variability in synthetic monolayer MoS$_{2}$ devices. ACS Nano, 2017, 11: 8456-8463 CrossRef Google Scholar

[54] Ling X, Lee Y H, Lin Y. Role of the Seeding Promoter in MoS2Growth by Chemical Vapor Deposition. Nano Lett, 2014, 14: 464-472 CrossRef PubMed ADS Google Scholar

[55] Lim Y R, Song W, Han J K. Wafer-Scale, Homogeneous MoS2 Layers on Plastic Substrates for Flexible Visible-Light Photodetectors.. Adv Mater, 2016, 28: 5025-5030 CrossRef PubMed Google Scholar

[56] Huang J K, Pu J, Hsu C L. Large-area synthesis of highly crystalline WSe(2) monolayers and device applications.. ACS Nano, 2014, 8: 923-930 CrossRef PubMed Google Scholar

[57] Bao W, Cai X, Kim D. High mobility ambipolar MoS$_{2}$ field-effect transistors: Substrate and dielectric effects. Appl Phys Lett, 2013, 102: 042104 CrossRef ADS arXiv Google Scholar

[58] Kobayashi Y, Sasaki S, Mori S. Growth and optical properties of high-quality monolayer WS$_{2}$ on graphite. ACS Nano, 2015, 9: 4056-4063 CrossRef Google Scholar

[59] Tarasov A, Campbell P M, Tsai M Y. Highly Uniform Trilayer Molybdenum Disulfide for Wafer-Scale Device Fabrication. Adv Funct Mater, 2014, 24: 6389-6400 CrossRef Google Scholar

[60] Lin Y C, Zhang W, Huang J K. Wafer-scale MoS$_{2}$ thin layers prepared by MoO$_{3}$ sulfurization. Nanoscale, 2012, 4: 6637-6641 CrossRef PubMed ADS Google Scholar

[61] Zhang Q, Wang X F, Shen S H. Simultaneous synthesis and integration of two-dimensional electronic components. Nat Electron, 2019, 2: 164-170 CrossRef Google Scholar

[62] Song X, Zan W, Xu H. A novel synthesis method for large-area MoS$_{2}$ film with improved electrical contact. 2D Mater, 2017, 4: 025051 CrossRef ADS Google Scholar

[63] Luisier M, Lundstrom M, Antoniadis D A, et al. Ultimate device scaling: intrinsic performance comparisons of carbon-based, InGaAs, and Si field-effect transistors for 5 nm gate length. In: Proceedings of International Electron Devices Meeting, 2011. Google Scholar

[64] Low T, Li M F, Samudra G. Modeling Study of the Impact of Surface Roughness on Silicon and Germanium UTB MOSFETs. IEEE Trans Electron Devices, 2005, 52: 2430-2439 CrossRef ADS Google Scholar

[65] Yu X, Kang J, Takenaka M. Evaluation of Mobility Degradation Factors and Performance Improvement of Ultrathin-Body Germanium-on-Insulator MOSFETs by GOI Thinning Using Plasma Oxidation. IEEE Trans Electron Devices, 2017, 64: 1418-1425 CrossRef ADS Google Scholar

[66] Seonghoon Jin , Fischetti M V, Ting-Wei Tang M V. Modeling of Surface-Roughness Scattering in Ultrathin-Body SOI MOSFETs. IEEE Trans Electron Devices, 2007, 54: 2191-2203 CrossRef ADS Google Scholar

[67] Fiori G, Bonaccorso F, Iannaccone G. Electronics based on two-dimensional materials. Nat Nanotechnol, 2014, 9: 768-779 CrossRef PubMed ADS Google Scholar

[68] Thiele S, Kinberger W, Granzner R. The prospects of transition metal dichalcogenides for ultimately scaled CMOS. Solid-State Electron, 2018, 143: 2-9 CrossRef ADS Google Scholar

[69] Cao W, Jiang J, Xie X. 2-D Layered Materials for Next-Generation Electronics: Opportunities and Challenges. IEEE Trans Electron Devices, 2018, 65: 4109-4121 CrossRef ADS Google Scholar

[70] Song X, Guo Z, Zhang Q. Progress of Large-Scale Synthesis and Electronic Device Application of Two-Dimensional Transition Metal Dichalcogenides.. Small, 2017, 13: 1700098 CrossRef PubMed Google Scholar

[71] Lemme M C, Li L J, Palacios T. Two-dimensional materials for electronic applications. MRS Bull, 2014, 39: 711-718 CrossRef Google Scholar

[72] Kwon H, Jeon P J, Kim J S. Large scale MoS$_{2}$ nanosheet logic circuits integrated by photolithography on glass. 2D Mater, 2016, 3: 044001 CrossRef ADS Google Scholar

[73] Yu L, Zubair A, Santos E J G. High-Performance WSe2Complementary Metal Oxide Semiconductor Technology and Integrated Circuits. Nano Lett, 2015, 15: 4928-4934 CrossRef PubMed ADS Google Scholar

[74] Sachid A B, Tosun M, Desai S B. Monolithic 3D CMOS Using Layered Semiconductors.. Adv Mater, 2016, 28: 2547-2554 CrossRef PubMed Google Scholar

[75] Liu Y, Ang K W. Monolithically Integrated Flexible Black Phosphorus Complementary Inverter Circuits. ACS Nano, 2017, 11: 7416-7423 CrossRef Google Scholar

[76] Desai S B, Madhvapathy S R, Sachid A B. MoS$_{2}$ transistors with 1-nanometer gate lengths. Science, 2016, 354: 99-102 CrossRef PubMed ADS Google Scholar

[77] Allain A, Kang J, Banerjee K. Electrical contacts to two-dimensional semiconductors. Nat Mater, 2015, 14: 1195-1205 CrossRef PubMed ADS Google Scholar

[78] Das S, Chen H Y, Penumatcha A V. High Performance Multilayer MoS2Transistors with Scandium Contacts. Nano Lett, 2013, 13: 100-105 CrossRef PubMed ADS Google Scholar

[79] Yu L, Lee Y H, Ling X. Graphene/MoS2Hybrid Technology for Large-Scale Two-Dimensional Electronics. Nano Lett, 2014, 14: 3055-3063 CrossRef PubMed ADS Google Scholar

[80] Kappera R, Voiry D, Yalcin S E. Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS$_{2}$. APL Mater, 2014, 2: 092516 CrossRef ADS Google Scholar

[81] Lee S, Tang A, Aloni S. Statistical Study on the Schottky Barrier Reduction of Tunneling Contacts to CVD Synthesized MoS2. Nano Lett, 2016, 16: 276-281 CrossRef PubMed ADS Google Scholar

[82] Hu Z, Wu Z, Han C. Two-dimensional transition metal dichalcogenides: interface and defect engineering.. Chem Soc Rev, 2018, 47: 3100-3128 CrossRef PubMed Google Scholar

[83] Kim H G, Lee H B R. Atomic Layer Deposition on 2D Materials. Chem Mater, 2017, 29: 3809-3826 CrossRef Google Scholar

[84] McDonnell S, Brennan B, Azcatl A. HfO(2) on MoS(2) by atomic layer deposition: adsorption mechanisms and thickness scalability.. ACS Nano, 2013, 7: 10354-10361 CrossRef PubMed Google Scholar

[85] Zou X, Wang J, Chiu C H. Interface engineering for high-performance top-gated MoS2 field-effect transistors.. Adv Mater, 2014, 26: 6255-6261 CrossRef PubMed Google Scholar

[86] Yang W, Sun Q Q, Geng Y, et al. The integration of sub-10 nm gate oxide on MoS$_{2}$ with ultra low leakage and enhanced mobility. Sci Rep, 2015, 5: 11921. Google Scholar

[87] Azcatl A, McDonnell S, K. C. S. MoS$_{2}$ functionalization for ultra-thin atomic layer deposited dielectrics. Appl Phys Lett, 2014, 104: 111601 CrossRef ADS Google Scholar

[88] Pu J, Yomogida Y, Liu K K. Highly Flexible MoS2Thin-Film Transistors with Ion Gel Dielectrics. Nano Lett, 2012, 12: 4013-4017 CrossRef PubMed ADS Google Scholar

[89] Pu J, Funahashi K, Chen C H. Highly Flexible and High-Performance Complementary Inverters of Large-Area Transition Metal Dichalcogenide Monolayers.. Adv Mater, 2016, 28: 4111-4119 CrossRef PubMed Google Scholar

[90] Dathbun A, Kim Y, Kim S. Large-Area CVD-Grown Sub-2 V ReS2 Transistors and Logic Gates. Nano Lett, 2017, 17: 2999-3005 CrossRef PubMed ADS Google Scholar

[91] Zan W, Zhang Q, Xu H. Large capacitance and fast polarization response of thin electrolyte dielectrics by spin coating for two-dimensional MoS2 devices. Nano Res, 2018, 11: 3739-3745 CrossRef Google Scholar

[92] Li S L, Tsukagoshi K, Orgiu E. Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors.. Chem Soc Rev, 2016, 45: 118-151 CrossRef PubMed Google Scholar

[93] Gong C, Colombo L, Wallace R M. The Unusual Mechanism of Partial Fermi Level Pinning at Metal-MoS2Interfaces. Nano Lett, 2014, 14: 1714-1720 CrossRef PubMed ADS Google Scholar

[94] Kang J, Liu W, Sarkar D. Computational Study of Metal Contacts to Monolayer Transition-Metal Dichalcogenide Semiconductors. Phys Rev X, 2014, 4: 031005 CrossRef ADS Google Scholar

[95] Ma N, Jena D. Charge Scattering and Mobility in Atomically Thin Semiconductors. Phys Rev X, 2014, 4: 011043 CrossRef ADS arXiv Google Scholar

[96] Schwierz F. Graphene Transistors: Status, Prospects, and Problems. Proc IEEE, 2013, 101: 1567-1584 CrossRef Google Scholar

[97] Amani M, Burke R A, Proie R M. Flexible integrated circuits and multifunctional electronics based on single atomic layers of MoS$_{2}$ and graphene. Nanotechnology, 2015, 26: 115202 CrossRef PubMed ADS Google Scholar

[98] Zhang T, Liu H, Wang Y. Fast-Response Inverter Arrays Built on Wafer-Scale MoS 2 by Atomic Layer Deposition. Phys Status Solidi RRL, 2019, 13: 1900018 CrossRef ADS Google Scholar

[99] Zhang S, Xu H, Liao F. Wafer-scale transferred multilayer MoS$_{2}$ for high performance field effect transistors. Nanotechnology, 2019, 30: 174002 CrossRef PubMed ADS Google Scholar

[100] Das T, Chen X, Jang H. Highly Flexible Hybrid CMOS Inverter Based on Si Nanomembrane and Molybdenum Disulfide.. Small, 2016, 12: 5720-5727 CrossRef PubMed Google Scholar

[101] Chiu M H, Tang H L, Tseng C C. Metal-Guided Selective Growth of 2D Materials: Demonstration of a Bottom-Up CMOS Inverter.. Adv Mater, 2019, 31: 1900861 CrossRef PubMed Google Scholar

[102] Liu W, Kang J, Sarkar D. Role of Metal Contacts in Designing High-Performance Monolayer n-Type WSe2Field Effect Transistors. Nano Lett, 2013, 13: 1983-1990 CrossRef PubMed ADS Google Scholar

[103] Tosun M, Chuang S, Fang H. High-gain inverters based on WSe2 complementary field-effect transistors.. ACS Nano, 2014, 8: 4948-4953 CrossRef PubMed Google Scholar

[104] Lin Z, Liu Y, Halim U. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature, 2018, 562: 254-258 CrossRef PubMed ADS Google Scholar

[105] Yu L, El-Damak D, Ha S, et al. Enhancement-mode single-layer CVD MoS2 FET technology for digital electronics. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2015. Google Scholar

[106] Yang R, Li H, Smithe K K H. Ternary content-addressable memory with MoS2 transistors for massively parallel data search. Nat Electron, 2019, 2: 108-114 CrossRef Google Scholar

[107] Liu J, Zeng Z, Cao X. Preparation of MoS?-polyvinylpyrrolidone nanocomposites for flexible nonvolatile rewritable memory devices with reduced graphene oxide electrodes.. Small, 2012, 8: 3517-3522 CrossRef PubMed Google Scholar

[108] Huang X, Zheng B, Liu Z. Coating two-dimensional nanomaterials with metal-organic frameworks.. ACS Nano, 2014, 8: 8695-8701 CrossRef PubMed Google Scholar

[109] Yin Z, Zeng Z, Liu J. Memory devices using a mixture of MoS? and graphene oxide as the active layer.. Small, 2013, 9: 727-731 CrossRef PubMed Google Scholar

[110] Lopez-Sanchez O, Lembke D, Kayci M. Ultrasensitive photodetectors based on monolayer MoS$_{2}$. Nat Nanotechnol, 2013, 8: 497-501 CrossRef PubMed ADS Google Scholar

[111] Huo N, Konstantatos G. Ultrasensitive all-2D MoS$_{2}$ phototransistors enabled by an out-of-plane MoS$_{2}$ PN homojunction. Nat Commun, 2017, 8: 572 CrossRef PubMed ADS Google Scholar

[112] Wang Q H, Kalantar-Zadeh K, Kis A. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 2012, 7: 699-712 CrossRef PubMed ADS Google Scholar

[113] Chang Y H, Zhang W, Zhu Y. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection.. ACS Nano, 2014, 8: 8582-8590 CrossRef PubMed Google Scholar

[114] Zhou Y H, An H N, Gao C. UV-Vis-NIR photodetector based on monolayer MoS2. Mater Lett, 2019, 237: 298-302 CrossRef Google Scholar

[115] Xue Y, Zhang Y, Liu Y. Scalable production of a few-layer MoS$_{2}$/WS$_{2}$ vertical heterojunction array and its application for photodetectors. ACS Nano, 2016, 10: 573-580 CrossRef Google Scholar

[116] Kim Y, Bark H, Kang B. Wafer-scale substitutional doping of monolayer MoS$_{2}$ films for high-performance optoelectronic devices. ACS Appl Mater Interfaces, 2019, 11: 12613-12621 CrossRef Google Scholar

[117] Agarwal A, Lang J. Foundations of Analog and Digital Electronic Circuits. Amsterdam: Elsevier, 2005. Google Scholar

[118] Cheng R, Bai J, Liao L. High-frequency self-aligned graphene transistors with transferred gate stacks. Proc Natl Acad Sci USA, 2012, 109: 11588-11592 CrossRef PubMed ADS Google Scholar

[119] Sanne A, Ghosh R, Rai A. Radio Frequency Transistors and Circuits Based on CVD MoS2. Nano Lett, 2015, 15: 5039-5045 CrossRef PubMed ADS Google Scholar

[120] Chang H Y, Yogeesh M N, Ghosh R. Large-Area Monolayer MoS2 for Flexible Low-Power RF Nanoelectronics in the GHz Regime.. Adv Mater, 2016, 28: 1818-1823 CrossRef PubMed Google Scholar

[121] Gao Q, Zhang Z, Xu X. Scalable high performance radio frequency electronics based on large domain bilayer MoS$_{2}$. Nat Commun, 2018, 9: 4778 CrossRef PubMed ADS Google Scholar

  • Figure 1

    (Color online) (a) Schematic illustration of an experimental setup and photos of 2-inch MoS$_{2}$/sapphire and bare sapphire substrate [48]@Copyright 2017 American Chemical Society. (b) The optical image of grown MoS$_{2}$ film with PTAS seeding promoter and without seeding promoter. Insets from left to right: optical image of film with PTAS, atomic force microscope (AFM) image of film with PTAS, AFM image of film without PTAS, corresponding height cross-section analysis [54]@Copyright 2014 American Chemical Society. (c) Substrate with not fully covered triangular MoS$_{2}$ film, substrate with continuous monolayer MoS$_{2}$, continuous MoS$_{2}$ film with multilayer starting to grow and continuous MoS$_{2}$ film with high-density multilayer islands [55]@Copyright 2016 John Wiley and Sons. (d) Optical image, structure model, AFM image of monolayer WS$_{2}$ grown on graphite and height profile along the black line in AFM image [56]@Copyright 2015 American Chemical Society. (e) Schematic diagram of a face-to-face metal-precursor supply route towards synthesizing MoS$_{2}$ on glass [36] @Copyright 2018 Springer Nature.

  • Figure 2

    (Color online) (a) A typical setup of wafer-scale MoS$_{2}$ growth by sulfurizing of a pre-deposited Mo metal thin film [59] @Copyright 2014 John Wiley and Sons. (b) Schematic illustration of the synthetic procedure for the ALD-based WS$_{2}$ film [34]@Copyright 2013 American Chemical Society. (c) Temperature profile of thermal decomposition process for the synthesis of MoS$_{2}$ layers and AFM image of the as-grown MoS$_{2}$ on SiO$_{2}$/Si substrate [55]@Copyright 2016 John Wiley and Sons. (d) Diagram of MOCVD growth setup, precursors were introduced to the growth setup with individual mass flow controllers [32]@Copyright 2015 Springer Nature.

  • Figure 3

    (Color online) (a) Left: the fabricated ML-MoS$_{2}$ FET and logic gate array on the wafer. Right: voltage transfer curve and gain of the inverter [27]@Copyright 2018 John Wiley and Sons. (b) Left: optical image of the ReS$_{2}$ transistors and logic gates, such as NOR, NAND, and NOT gates. Right: voltage transfer characteristics and signal gain of the NOT gate at $V_{\rm~DD}$ = 1 V [90]@Copyright 2017 American Chemical Society. (c) Schematic depiction of a chemically synthesized MoTe$_{2}$ inverter. The left inset is the circuit diagram for the inverter [61]@Copyright 2019 Springer Nature. (d) Left: schematic illustration of a complementary inverter based on Si nanomembrane (NM) and MoS$_{2}$ FETs. Right: voltage transfer curves of the inverter at different $V_{\rm~DD}$ [97]@Copyright 2016 John Wiley and Sons. (e) Left: illustration of the monolayer MoS$_{2}$ and WSe$_{2}$ FET built on the sapphire substrate. Right: the voltage gain plotted of input voltage. The maximum gain exceeds 110 with a low input voltage [89]@Copyright 2016 American Chemical Society. (f) Left: schematic illustration along with corresponding optical microscopy image of the CMOS inverter built up on WSe$_{2}$ and MoSe$_{2}$ grown by MGSG. Right: output voltage and gain of the integrated inverter as a function of the input voltage [98]@Copyright 2019 John Wiley and Sons.

  • Figure 4

    (Color online) (a) Illustration diagram of the MoS$_{2}$ FET fabricated by gate-first process. (b) Layout (left) and the optical photograph (right) of fabricated test chip using the design flow. (c) Statistics of $V_{\rm~T}$ of MoS$_{2}$ FETs from gate-last and gate-first fabrication technologies. (d) Schematic, micrograph, and waveform results of the fabricated representative XNOR gate (left) and latch circuit (right) [8]@Copyright 2016 American Chemical Society.

  • Figure 5

    (Color online) (a) Schematic diagram of an inverter (top) and an individual MoS$_{2}$ transistor (bottom) in gate-first technology. (b) Output voltage of the MoS$_{2}$ logic inverter as a function of the input voltage. (c) Microscope image of the microprocessor containing 115 MoS$_{2}$ transistors and measured 0.6 mm$^{2}$ in size. (d) Operation timing diagram of the microprocessor [9]@Copyright 2017 Springer Nature. (e) Optical images of an inverter, NAND, NOR, AND and XOR gates on solution-processable MoS$_{2}$ nanosheets. (f) The measured voltage transfer curve and signal gain of the integrated MoS$_{2}$ inverter. Logic operation of the (g) NAND, (h) NOR, and (i) XOR gates with a power supply of $V_{\rm~DD}$ = 5 V.protect łinebreak (j) Experimental truth table for the logic half-adder. The logic half-adder is implemented by using an AND gate and an XOR gate [104] @Copyright 2018 Springer Nature.

  • Figure 6

    (Color online) (a) The 3D schematic illustration structure of 2T/2R TMD-TCAM cells, using two MoS$_{2}$ FET fabricate two RRAM. (b) The 3D schematic of the 1T/1R structure, which is the component of the 2T/2R TCAM cell. (c) Circuit diagram of the 2T/2R TCAM cell based on two RRAM define match or mismatch states with the stored data bit `1' or `0'. (d) Circuit diagram of the 1T/1R structure. (e) Set and reset measurements of the 1T/1R DRAM for 45 cycles. (f) Distribution of the set and reset voltages [106] @Copyright 2019 Springer Nature. (g) $I$-$V$ characteristics and the schematic illustration of the MoS$_{2}$-PVP based flexible memory device [107] @Copyright 2012 John Wiley and Sons. (h) $I$-$V$ characteristics and the schematic illustration of the MoS$_{2}$-ZIF-8 based flexible memory device [108] @Copyright 2014 American Chemical Society. (i) $I$-$V$ characteristics and the schematic illustration of the MoS$_{2}$-GO based memory device [109] @Copyright 2012 John Wiley and Sons.

  • Figure 7

    (Color online) (a) Optical image of visible-light photodetector arrays based on homogeneous MoS$_{2}$ film on a 4 inch SiO$_{2}$/Si wafer. (b) Time-resolved photocurrents of the device measured at $P$ = 12.5 mW$\times~$cm$^{~-~2~}$ under different bias voltages [55] @Copyright 2016 John Wiley and Sons. (c) Microscope photograph of MoS$_{2}$/WS$_{2}$ vertical heterojunction device arrays on the SiO$_{2}$/Si substrate. (d) Schematic diagram of the MoS$_{2}$/WS$_{2}$ vertical heterojunction phototransistor.protect łinebreak (e) Current-voltage characteristics of the MoS$_{2}$/WS$_{2}$ vertical heterojunction phototransistor measured in dark. The inset in (e) shows the band alignment for a WS$_{2}$ and MoS$_{2}$ vertical heterojunction [115]@Copyright 2016 American Chemical Society. (f) Schematic illustration of the photodetector based on doped MoS$_{2}$. The inset in (f): transfer curves of photodetectors based on Nb-doped MoS$_{2}$ measured with the exposure of the photodetectors to 282 nW light powers at a 550 nmprotect łinebreak wavelength laser. (g) Photographic image of a homogeneous large-area film of Nb-doped MoS$_{2}$ which was transferred onto a 2 inch SiO$_{2}$/Si wafer. (h) Work function distribution across a 5.3 mm $\times~$ 4.0 mm area divided into 100 regions [116]@Copyright 2019 American Chemical Society.

  • Figure 8

    (Color online) (a) Optical image of the CVD MoS$_{2}$ in the ground-signal-ground structure (GSG). (b) Short circuit current gain $|h_{21}|$ versus frequency. (c) Maximum frequency of oscillation $f_{\rm~max}$ versus frequency [119]@Copyright 2015 American Chemical Society. (d) Electrical characteristics of flexible MoS$_{2}$ FETs ($L_g$ = 500 nm) at 300 K. Inset is an optical photograph of CVD MoS$_{2}$ FETs on the flexible substrate. (e) Input and output voltage waveforms of CS amplifier with a gain of 15 dB. The CS amplifier is based on MoS$_{2}$ flexible TFT ($f_{\rm~RF}\approx~1.4$ MHz). (f) Output frequency spectrum of MoS$_{2}$ FET-based RF mixer ($f_{\rm~RF}\approx~1.4$ MHz, $f_{\rm~LO}\approx~1.1$ MHz, $f_{\rm~IF}\approx~300$ kHz). The inset shows the conversion gain of the mixer is ca. $-$17 dB. (g) MoS$_{2}$ FET-based wireless AM (amplitude modulation) receiver output spectrum. The distance between transmit and receiver antenna is 5 m, and the carrier frequency ($\omega_{\rm~C}$) is 1.5 MHz [120]@Copyright 2015 John Wiley and Sons. (h) Schematic illustration of bilayer MoS$_{2}$ RF transistor. (i) The SEM images of MoS$_{2}$ RF transistor with dual-channel structure scale bar is 500 nm. (j) Small-signal current gain $|h_{21}|$ versus frequency for device with gate length of 90 nm. (k) Unilateral power gain $U$ versus frequency for device with gate length of 90 nm [121]@Copyright 2018 Springer Nature.

  • Table 1   Summary of recent large-scale continuous TMDs synthetic methods
    Syntheticpar methods Materials Key preparation conditions Doping typepar & mobility (cm$^{2}$/Vs)par & ON/OFF ratio Domain size ($\mu$m) par & coverage Ref.
    MoS$_{2}$ Independent carrier gas channels n-type par 40 par $\sim$10$^{6}$ $\sim$2par 100% [48]
    MoS$_{2}$ Aromatic molecules as seeding promotes n-type par – par – $\sim~$60par 60% [54]
    One-step direct MoS$_{2}$ Low pressure to introduce multilayer dots n-type par 70 par 10$^{8}$ 10–20 par 100% [55]
    deposition WSe$_{2}$ Introduction of H$_{2}$ in reaction furnace p-type par 90 par 10$^{5}$ 10–50 par – [56]
    WS$_{2}$ Substrate: cleaved graphite surface exceptionally high-temperature at 1100$^{\circ}$C Non-doped par –par – 15 par – [36]
    MoS$_{2}$ Face-to-face metal source supply substrate: soda-lime glass n-type par 6.3–11.4 par 10$^{5}$–10$^{6}$ 200par 43%–100% [59]
    MoS$_{2}$ Mo metal evaporated by E-beam n-type par 4.1–8.7 par – –par 100%
    Two-step vapor WS$_{2}$ WoO$_{3}$ deposited by ALD p-type par 3.9 par – 0.01–0.02par 100%
    chalcogenization MoS$_{2}$ (NH$_{4})_{2}$MoS$_{4}$ decomposed into MoS$_{2}$ at 450$^{\circ}$C n-typepar 14 par 5$\times$10$^{2}$ –par – [34]
    MOCVD MoS$_{2}$ MOCVD precisely control the concentration of precursors n-type par 30 par 10$^{6}$ 1par 100% [55]
    MBE MoTe$_{2}$ Modulating the source supply with mass flow p-type par 32 par 10$^{7}$ –par 100% [32]
  • Table 2   Summary of TMDs-based inverters
    Channel material Mobility (cm$^{2}$/Vs) Gate dielectric Substrate Inverter type $V_{\rm~DD}$ par (V) Inverter gain Ref.
    MoS$_{2}$ 4.3 35 nm Al$_{2}$O$_{3}$ Polyimide NMOS 15 16 [99]
    MoS$_{2}$ 33.73 30 nm HfO$_{2}$ Sapphire NMOS 3 23 [27]
    ReS$_{2}$ 0.9 Ion gel SiO$_{2}$/Si NMOS 1 3.5 [90]
    Graphene & MoS$_{2}$ 17 20 nm Al$_{2}$O$_{3}$ SiO$_{2}$/Si NMOS 3 12 [79]
    MoTe$_{2}$ 130 12 nm HfO$_{2}$ SiO$_{2}$/Si PMOS $-$6 35 [61]
    MoS$_{2}$ 3 22 nm Al$_{2}$O$_{3}$ SiO$_{2}$/Si NMOS 5 50 [9]
    MoS$_{2}$ 7–11 30 nm Al$_{2}$O$_{3}$ SiO$_{2}$/Si NMOS 5 20 [104]
    n-MoS$_{2~}$ & par p-Si-NW 1.3 & 14 50 nm Al$_{2}$O$_{3}$ SiO$_{2}$/Si CMOS 5 16 [97]
    n-MoS$_{2}$ & p-WSe$_{2}$ 30 & 55 Ion gel Sapphire CMOS 2 110 [89]
    n-WSe$_{2}$ & p-MoSe$_{2}$ 11.49 & 10.68 Ionic liquid Sapphire CMOS 3 23 [98]
    n-MoS$_{2~}$ & p-MoS$_{2}$ 10 HfO$_{2}$ SiO$_{2}$/Si CMOS 3 22 [12]
    n-PtSe$_{2~}$ & p-PtSe$_{2}$ 14 & 15 30 nm HfO$_{2}$ Sapphire CMOS 3 1 [28]