logo

SCIENCE CHINA Information Sciences, Volume 63 , Issue 12 : 222201(2020) https://doi.org/10.1007/s11432-019-2631-6

Estimation of velocity potential of water waves using a Luenberger-like observer

More info
  • ReceivedMar 21, 2019
  • AcceptedAug 5, 2019
  • PublishedOct 27, 2020

Abstract


Acknowledgment

This work was supported by Scientific Instruments Development Program of National Natural Science Foundation of China (Grant No. 615278010) and Science and Technology Planning Project of Guangdong (Grant No. 2017B010116005).


References

[1] Irish J L, Lillycrop W J. Scanning laser mapping of the coastal zone: the SHOALS system. ISPRS J Photogrammetry Remote Sens, 1999, 54: 123-129 CrossRef ADS Google Scholar

[2] Wang C K, Philpot W D. Using airborne bathymetric lidar to detect bottom type variation in shallow waters. Remote Sens Environ, 2007, 106: 123-135 CrossRef ADS Google Scholar

[3] Gauthier J P, Kupka I. A separation principle for bilinear systems with dissipative drift. IEEE Trans Automat Contr, 1992, 37: 1970-1974 CrossRef Google Scholar

[4] Reid R M, Russell D L. Boundary Control and Stability of Linear Water Waves. SIAM J Control Optim, 1985, 23: 111-121 CrossRef Google Scholar

[5] Reid R M. Open Loop Control of Water Waves in an Irregular Domain. SIAM J Control Optim, 1986, 24: 789-796 CrossRef Google Scholar

[6] Gauthier J P, Hammouri H, Othman S. A simple observer for nonlinear systems applications to bioreactors. IEEE Trans Automat Contr, 1992, 37: 875-880 CrossRef Google Scholar

[7] Ramdani K, Tucsnak M, Weiss G. Recovering the initial state of an infinite-dimensional system using observers. Automatica, 2010, 46: 1616-1625 CrossRef Google Scholar

[8] Li X D, Xu C Z. Infinite-dimensional Luenberger-like observers for a rotating body-beam system. Syst Control Lett, 2011, 60: 138-145 CrossRef Google Scholar

[9] Haine G. Observateurs en dimension infinie. Application à l$'$étude de quelques problèmes inverses. Dissertation for Ph.D. Degree. Lorraine: Université De Lorraine, 2012. Google Scholar

[10] Xu C Z, Deguenon J, Sallet G. Infinite dimensional observers for vibrating systems. In: Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, 2009. 3979--3983. Google Scholar

[11] Dean R G, Dalrymple R. Water Wave Mechanics for Engineers and Scientists. Singapore: World Scientific, 1991. Google Scholar

[12] Lannes D. The Water Waves Problem: Mathematical Analysis and Asymptotics. Providence: American Mathematical Society, 2013. Google Scholar

[13] Whitham G B. Linear and Nonlinear Waves. Hoboken: John Wiley & Sons, 2011. Google Scholar

[14] Lannes D. Well-posedness of the water-waves equations. J Amer Math Soc, 2005, 18: 605-655 CrossRef Google Scholar

[15] Yu Y, Pei H L, Xu C Z. An infinite-dimensional Luenberger-like observer for water waves. In: Proceedings of the 37th Chinese Control Conference, Wuhan, 2018. 1157--1162. Google Scholar

[16] Nouguier F, Grilli S T, Guerin C A. Nonlinear Ocean Wave Reconstruction Algorithms Based on Simulated Spatiotemporal Data Acquired by a Flash LIDAR Camera. IEEE Trans Geosci Remote Sens, 2014, 52: 1761-1771 CrossRef ADS Google Scholar

[17] Craig W, Sulem C. Numerical Simulation of Gravity Waves. J Comput Phys, 1993, 108: 73-83 CrossRef ADS Google Scholar

[18] Luenberger D. An introduction to observers. IEEE Trans Automat Contr, 1971, 16: 596-602 CrossRef Google Scholar

[19] Yu Y, Pei H L, Xu C Z. Identification of water depth and velocity potential for water waves. Syst Control Lett, 2019, 125: 29-36 CrossRef Google Scholar

[20] Tucsnak M, Weiss G. Observation and Control for Operator Semigroups. Basel: Birkhäuser Basel, 2009. Google Scholar

[21] Brezis H. Analyse Fonctionnelle: Théorie et Applications. Dunod Paris, 1999. Google Scholar

[22] Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. Berlin: Springer, 1983. Google Scholar

[23] Guo B Z, Wang J M, Yang K Y. Dynamic stabilization of an Euler-Bernoulli beam under boundary control and non-collocated observation. Syst Control Lett, 2008, 57: 740-749 CrossRef Google Scholar

  • Figure 1

    (Color online) Schematic of water waves. The red lines delineate the water domain $\Omega$.

  • Figure 2

    (Color online) Mesh grid of the water domain $(x,y)~\in~[0,\lambda]~\times~[-h,0]$. The step sizes are $\Delta_x$ and $\Delta_y$.

  • Table 1  

    Table 1$t_1$: time required for the estimated velocity potential to reach the velocitypotential of the system at $x=1.5$ m with a precision of $5%$; $t_2$: time required for the estimated surface elevation to reach the surface elevation of the system at$x=1.5$ m with a precision of $5%$.

    Gain
    1 2 3 4 5 6 7 8 9 10 11
    $t_1$ (s) 7.31 3.35 2.39 1.74 1.11 1.161.14 1.01 0.26 0.38 0.8
    $t_2$ (s)5.24 2.66 1.72 1.17 1.06 0.810.35 0.34 0.32 0.32 0.29
  • Table 2  

    Table 2Relation between $M$ and $F^*$. The third row denotes the shortest time required for the estimated states $(\hat~\xi,~\hat~\eta)$ to reach the actual states of the dynamical system $(\xi,~\eta)$ at $x=1.5$ m with a precision of $5%$.

    $M$ 1 2 3 4 5 6 7 8 9 10 11 12
    $F^*$9.5 8.7 8.6 8.4 8.8 8.6 8.7 8.6 8.7 8.7 8.5 8.7
    Time0.3 0.52 0.48 0.43 0.46 0.460.47 0.44 0.47 0.47 0.44 0.47