References
[1]
Pozzi F A, Fersini E, Messina E, et al. Challenges of sentiment analysis in social networks: an overview. Sentiment Anal Soc Netw, 2017, 1: 1--11.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Pozzi F A, Fersini E, Messina E, et al. Challenges of sentiment analysis in social networks: an overview. Sentiment Anal Soc Netw, 2017, 1: 1--11&
[2]
Liu B. Sentiment Analysis and Opinion Mining. Williston: Morgan & Claypool, 2012.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Liu B. Sentiment Analysis and Opinion Mining. Williston: Morgan & Claypool, 2012&
[3]
Pang
B,
Lee
L.
Opinion Mining and Sentiment Analysis.
FNT Inf Retrieval,
2008, 2: 1-135
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Opinion Mining and Sentiment Analysis&author=Pang B&author=Lee L&publication_year=2008&journal=FNT Inf Retrieval&volume=2&pages=1-135
[4]
Liu B. Sentiment Analysis: Mining Opinions, Sentiments, and Emotions. Cambridge: Cambridge University Press. 2015.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Liu B. Sentiment Analysis: Mining Opinions, Sentiments, and Emotions. Cambridge: Cambridge University Press. 2015&
[5]
Yang M, Tu W T, Wang J X, et al. Attention-based LSTM for target-dependent sentiment classification. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence, California, 2017. 5013--5014.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yang M, Tu W T, Wang J X, et al. Attention-based LSTM for target-dependent sentiment classification. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence, California, 2017. 5013--5014&
[6]
Kalchbrenner N, Grefenstette E, Blunsom P. A convolutional neural network for modeling sentences. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Maryland, 2014. 655--665.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kalchbrenner N, Grefenstette E, Blunsom P. A convolutional neural network for modeling sentences. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Maryland, 2014. 655--665&
[7]
Stone
P J,
Bales
R F,
Namenwirth
J Z.
The general inquirer: A computer system for content analysis and retrieval based on the sentence as a unit of information.
Syst Res,
2007, 7: 484-498
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The general inquirer: A computer system for content analysis and retrieval based on the sentence as a unit of information&author=Stone P J&author=Bales R F&author=Namenwirth J Z&publication_year=2007&journal=Syst Res&volume=7&pages=484-498
[8]
Pang B, Lee L, Vaithyanathan S. Thumbs up?: sentiment classification using machine learning techniques. In: Proceedings of Conference on Empirical Methods in Natural Language Processing (EMNLP), Philadelphia, 2002. 79--86.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Pang B, Lee L, Vaithyanathan S. Thumbs up?: sentiment classification using machine learning techniques. In: Proceedings of Conference on Empirical Methods in Natural Language Processing (EMNLP), Philadelphia, 2002. 79--86&
[9]
Zhang
L,
Wang
S,
Liu
B.
Deep learning for sentiment analysis: A survey.
WIREs Data Min Knowl Discov,
2018, 8: 1-25
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deep learning for sentiment analysis: A survey&author=Zhang L&author=Wang S&author=Liu B&publication_year=2018&journal=WIREs Data Min Knowl Discov&volume=8&pages=1-25
[10]
Rojas-Barahona
L M.
Deep learning for sentiment analysis.
Language Linguistics Compass,
2016, 10: 701-719
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deep learning for sentiment analysis&author=Rojas-Barahona L M&publication_year=2016&journal=Language Linguistics Compass&volume=10&pages=701-719
[11]
Jin Y, Zhang H, Du D L. Incorporating positional information into deep belief networks for sentiment classification. In: Proceedings of Industrial Conference on Data Mining, 2017. 1--15.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Jin Y, Zhang H, Du D L. Incorporating positional information into deep belief networks for sentiment classification. In: Proceedings of Industrial Conference on Data Mining, 2017. 1--15&
[12]
Amplayo R K, Kim J, Sung S, et al. Cold-start aware user and product attention for sentiment classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, 2018. 2535--2544.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Amplayo R K, Kim J, Sung S, et al. Cold-start aware user and product attention for sentiment classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, 2018. 2535--2544&
[13]
Dou Z-Y. Capturing user and product information for document level sentiment analysis with deep memory network. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Copenhagen, 2017. 521--526.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dou Z-Y. Capturing user and product information for document level sentiment analysis with deep memory network. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Copenhagen, 2017. 521--526&
[14]
Wu Z, Dai X-Y, Yin C, et al. Improving review representations with user attention and product attention for sentiment classification. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, 2018. 5989--5995.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wu Z, Dai X-Y, Yin C, et al. Improving review representations with user attention and product attention for sentiment classification. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, 2018. 5989--5995&
[15]
Salinca A. Convolutional neural networks for sentiment classification on business reviews. In: Proceedings of IJCAI Workshop on Semantic Machine Learning, Melbourne, 2017.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Salinca A. Convolutional neural networks for sentiment classification on business reviews. In: Proceedings of IJCAI Workshop on Semantic Machine Learning, Melbourne, 2017&
[16]
Alashri S, Kandala S S, Bajaj V, et al. An analysis of sentiments on facebook during the 2016 U.S. presidential election. In: Proceedings of IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, San Francisco, 2016. 795--802.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Alashri S, Kandala S S, Bajaj V, et al. An analysis of sentiments on facebook during the 2016 U.S. presidential election. In: Proceedings of IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, San Francisco, 2016. 795--802&
[17]
Poria
S,
Cambria
E,
Gelbukh
A.
Aspect extraction for opinion mining with a deep convolutional neural network.
Knowledge-Based Syst,
2016, 108: 42-49
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Aspect extraction for opinion mining with a deep convolutional neural network&author=Poria S&author=Cambria E&author=Gelbukh A&publication_year=2016&journal=Knowledge-Based Syst&volume=108&pages=42-49
[18]
Wang Z Q, Zhang Y. Opinion recommendation using neural memory model. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Copenhagen, 2017. 1626--1637.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang Z Q, Zhang Y. Opinion recommendation using neural memory model. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Copenhagen, 2017. 1626--1637&
[19]
Mooney
R J,
Bunescu
R.
Mining knowledge from text using information extraction.
SIGKDD Explor Newsl,
2005, 7: 3-10
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mining knowledge from text using information extraction&author=Mooney R J&author=Bunescu R&publication_year=2005&journal=SIGKDD Explor Newsl&volume=7&pages=3-10
[20]
Hu M Q, Liu B. Mining and summarizing customer reviews. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Seattle, 2004. 168--177.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hu M Q, Liu B. Mining and summarizing customer reviews. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Seattle, 2004. 168--177&
[21]
Turney P D. Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, 2002, 417--424.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Turney P D. Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, 2002, 417--424&
[22]
Kim S M, Hovy E. Determining the sentiment of opinions. In: Proceedings of the 20th International Conference on Computational Linguistics (COLING), Geneva, 2004.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kim S M, Hovy E. Determining the sentiment of opinions. In: Proceedings of the 20th International Conference on Computational Linguistics (COLING), Geneva, 2004&
[23]
Alm C O, Roth D, Sproat R. Emotions from text: machine learning for text-based emotion prediction. In: Proceedings of Conference on Human Language Technology and Empirical Methods in Natural Language Processing (HLT/EMNLP), Vancouver, 2005. 579--586.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Alm C O, Roth D, Sproat R. Emotions from text: machine learning for text-based emotion prediction. In: Proceedings of Conference on Human Language Technology and Empirical Methods in Natural Language Processing (HLT/EMNLP), Vancouver, 2005. 579--586&
[24]
Jindal N, Liu B. Opinion spam and analysis. In: Proceedings of Conference on Web Search and Web Data Mining (WSDM), Palo Alto, 2008. 219--230.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Jindal N, Liu B. Opinion spam and analysis. In: Proceedings of Conference on Web Search and Web Data Mining (WSDM), Palo Alto, 2008. 219--230&
[25]
Boiy
E,
Moens
M F.
A machine learning approach to sentiment analysis in multilingual Web texts.
Inf Retrieval,
2009, 12: 526-558
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A machine learning approach to sentiment analysis in multilingual Web texts&author=Boiy E&author=Moens M F&publication_year=2009&journal=Inf Retrieval&volume=12&pages=526-558
[26]
Morency L-P, Mihalcea R. Towards multimodal sentiment analysis: harvesting opinions from the web. In: Proceedings of International Conference on Multimodal Interfaces, Alicante, 2011. 169--176.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Morency L-P, Mihalcea R. Towards multimodal sentiment analysis: harvesting opinions from the web. In: Proceedings of International Conference on Multimodal Interfaces, Alicante, 2011. 169--176&
[27]
He Y L, Lin C H, Gao W, et al. Tracking sentiment and topic dynamics from social media. In: Proceedings of the 6th International AAAI Conference on Weblogs and Social Media, 2012. 483--486.
Google Scholar
http://scholar.google.com/scholar_lookup?title=He Y L, Lin C H, Gao W, et al. Tracking sentiment and topic dynamics from social media. In: Proceedings of the 6th International AAAI Conference on Weblogs and Social Media, 2012. 483--486&
[28]
Zhao
Y,
Qin
B,
Liu
T.
Encoding syntactic representations with a neural network for sentiment collocation extraction.
Sci China Inf Sci,
2017, 60: 110101
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Encoding syntactic representations with a neural network for sentiment collocation extraction&author=Zhao Y&author=Qin B&author=Liu T&publication_year=2017&journal=Sci China Inf Sci&volume=60&pages=110101
[29]
Lakkaraju H, Socher R, Manning C D. Aspect specific sentiment analysis using hierarchical deep learning. In: Proceedings of the NIPS, Workshop on Deep Learning and Representation Learning, 2014.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lakkaraju H, Socher R, Manning C D. Aspect specific sentiment analysis using hierarchical deep learning. In: Proceedings of the NIPS, Workshop on Deep Learning and Representation Learning, 2014&
[30]
Xue W, Li T. Aspect based sentiment analysis with gated convolutional networks. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, 2018. 2514--2523.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Xue W, Li T. Aspect based sentiment analysis with gated convolutional networks. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, 2018. 2514--2523&
[31]
Taboada
M,
Brooke
J,
Tofiloski
M.
Lexicon-Based Methods for Sentiment Analysis.
Comput Linguistics,
2011, 37: 267-307
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lexicon-Based Methods for Sentiment Analysis&author=Taboada M&author=Brooke J&author=Tofiloski M&publication_year=2011&journal=Comput Linguistics&volume=37&pages=267-307
[32]
Akter S, Aziz M T. Sentiment analysis on facebook group using lexicon based approach. In: Proceedings of International Conference on Electrical Engineering and Information Communication Technology, Bangladesh, 2016.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Akter S, Aziz M T. Sentiment analysis on facebook group using lexicon based approach. In: Proceedings of International Conference on Electrical Engineering and Information Communication Technology, Bangladesh, 2016&
[33]
Diamantini C, Mircoli A, Potena D. A negation handling technique for sentiment analysis. In: Proceedings of International Conference on Collaboration Technologies and Systems (CTS), Orlando, 2016. 188--195.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Diamantini C, Mircoli A, Potena D. A negation handling technique for sentiment analysis. In: Proceedings of International Conference on Collaboration Technologies and Systems (CTS), Orlando, 2016. 188--195&
[34]
Mukherjee S, Joshi S. Author-specific sentiment aggregation for polarity prediction of reviews. In: Proceedings of Language Resources and Evaluation Conference, Reykjavik, 2014. 3092--3099.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mukherjee S, Joshi S. Author-specific sentiment aggregation for polarity prediction of reviews. In: Proceedings of Language Resources and Evaluation Conference, Reykjavik, 2014. 3092--3099&
[35]
Perikos I, Hatzilygeroundis I. Aspect based sentiment analysis in social media with classifier ensembles. In: Proceedings of IEEE/ACIS International Conference on Computer and Information Science, 2017. 273--278.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Perikos I, Hatzilygeroundis I. Aspect based sentiment analysis in social media with classifier ensembles. In: Proceedings of IEEE/ACIS International Conference on Computer and Information Science, 2017. 273--278&
[36]
Musto C, Semeraro G, Polignano M. A comparison of lexicon-based approaches for sentiment analysis of microblog posts. In: Proceedings of the 8th International Workshop on Information Filtering and Retrieval co-located with XIII AI*IA Symposium on Artificial Intelligence, Pisa, 2014. 59--68.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Musto C, Semeraro G, Polignano M. A comparison of lexicon-based approaches for sentiment analysis of microblog posts. In: Proceedings of the 8th International Workshop on Information Filtering and Retrieval co-located with XIII AI*IA Symposium on Artificial Intelligence, Pisa, 2014. 59--68&
[37]
Khan
F H,
Qamar
U,
Bashir
S.
Lexicon based semantic detection of sentiments using expected likelihood estimate smoothed odds ratio.
Artif Intell Rev,
2017, 48: 113-138
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lexicon based semantic detection of sentiments using expected likelihood estimate smoothed odds ratio&author=Khan F H&author=Qamar U&author=Bashir S&publication_year=2017&journal=Artif Intell Rev&volume=48&pages=113-138
[38]
Aydogan E, Akcayol M A. A comprehensive survey for sentiment analysis tasks using machine learning techniques. In: Proceedings of International Symposium on Innovations in Intelligent SysTems and Applications (INISTA), Sinaia, 2016.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Aydogan E, Akcayol M A. A comprehensive survey for sentiment analysis tasks using machine learning techniques. In: Proceedings of International Symposium on Innovations in Intelligent SysTems and Applications (INISTA), Sinaia, 2016&
[39]
Peng W, Park D H. Generate adjective sentiment dictionary for social media sentiment analysis using constrained nonnegative matrix factorization. In: Proceedings of International AAAI Conference on Weblogs and Social Media, Barcelona, 2011. 273--280.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Peng W, Park D H. Generate adjective sentiment dictionary for social media sentiment analysis using constrained nonnegative matrix factorization. In: Proceedings of International AAAI Conference on Weblogs and Social Media, Barcelona, 2011. 273--280&
[40]
Povoda L. Sentiment analysis based on support vector machine and big data. In: Proceedings of International Conference on Telecommunications and Signal Processing (TSP), Vienna, 2016. 543--545.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Povoda L. Sentiment analysis based on support vector machine and big data. In: Proceedings of International Conference on Telecommunications and Signal Processing (TSP), Vienna, 2016. 543--545&
[41]
Zainuddin N, Selamat A. Sentiment analysis using support vector machine. In: Proceedings of International Conference on Computer, Communications, and Control Technology (I4CT), Langkawi, 2014.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zainuddin N, Selamat A. Sentiment analysis using support vector machine. In: Proceedings of International Conference on Computer, Communications, and Control Technology (I4CT), Langkawi, 2014&
[42]
Pannal N U, Nawarathna C P, Jayakody J T K, et al. Supervised learning based approach to aspect based sentiment analysis. In: Proceedings of IEEE International Conference on Computer and Information Technology (CIT), Nadi, 2016. 662--666.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Pannal N U, Nawarathna C P, Jayakody J T K, et al. Supervised learning based approach to aspect based sentiment analysis. In: Proceedings of IEEE International Conference on Computer and Information Technology (CIT), Nadi, 2016. 662--666&
[43]
Appel O, Chiclana F, Carter J, et al. A hybrid approach to sentiment analysis. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC), Vancouver, 2016. 4950--4957.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Appel O, Chiclana F, Carter J, et al. A hybrid approach to sentiment analysis. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC), Vancouver, 2016. 4950--4957&
[44]
Mukwazvure A, Supreethi K P. A hybrid approach to sentiment analysis of news comments. In: Proceedings of International Conference on Reliability, Infocom Technologies and Optimization (ICRITO), Noida, 2015.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mukwazvure A, Supreethi K P. A hybrid approach to sentiment analysis of news comments. In: Proceedings of International Conference on Reliability, Infocom Technologies and Optimization (ICRITO), Noida, 2015&
[45]
Goel A, Gautam J, Kumar S. Real time sentiment analysis of tweets using naive bayes. In: Proceedings of International Conference on Next Generation Computing Technologies (NGCT), Dehradun, 2016. 257--261.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Goel A, Gautam J, Kumar S. Real time sentiment analysis of tweets using naive bayes. In: Proceedings of International Conference on Next Generation Computing Technologies (NGCT), Dehradun, 2016. 257--261&
[46]
Zharmagambetov A S, Pak A A. Sentiment analysis of a document using deep learning approach and decision trees. In: Proceedings of International Conference on Electronics Computer and Computation, Kazakhstan, 2015.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zharmagambetov A S, Pak A A. Sentiment analysis of a document using deep learning approach and decision trees. In: Proceedings of International Conference on Electronics Computer and Computation, Kazakhstan, 2015&
[47]
Ouyang X, Zhou P, Li C H, et al. Sentiment analysis using convolutional neural network. In: Proceedings of IEEE International Conference on Computer and Information Technology, 2015. 2359--2364.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ouyang X, Zhou P, Li C H, et al. Sentiment analysis using convolutional neural network. In: Proceedings of IEEE International Conference on Computer and Information Technology, 2015. 2359--2364&
[48]
Kowsari K, Brown D E, Heidarysafa M. HDLTex: hierarchical deep learning for text classification. In: Proceedings of IEEE International Conference on Machine Learning and Applications, Cancun, 2017. 363--371.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kowsari K, Brown D E, Heidarysafa M. HDLTex: hierarchical deep learning for text classification. In: Proceedings of IEEE International Conference on Machine Learning and Applications, Cancun, 2017. 363--371&
[49]
Deng
L,
Yu
D.
Deep Learning: Methods and Applications.
FNT Signal Processing,
2013, 7: 197-387
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deep Learning: Methods and Applications&author=Deng L&author=Yu D&publication_year=2013&journal=FNT Signal Processing&volume=7&pages=197-387
[50]
Mikolov T, Karafiat M, Burget L, et al. Recurrent neural network based language model. In: Proceedings of the 11th Annual Conference of the International Speech Communication Association, 2010.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mikolov T, Karafiat M, Burget L, et al. Recurrent neural network based language model. In: Proceedings of the 11th Annual Conference of the International Speech Communication Association, 2010&
[51]
Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality. In: Proceedings of International Conference on Neural Information Processing Systems, Lake Tahoe, 2013. 3111--3119.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality. In: Proceedings of International Conference on Neural Information Processing Systems, Lake Tahoe, 2013. 3111--3119&
[52]
Luebke
D,
Humphreys
G.
How GPUs Work.
Computer,
2007, 40: 96-100
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=How GPUs Work&author=Luebke D&author=Humphreys G&publication_year=2007&journal=Computer&volume=40&pages=96-100
[53]
Yu T, Hidey C, Rambow O, et al. Leveraging sparse and dense feature combinations for sentiment classification. 2017,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yu T, Hidey C, Rambow O, et al. Leveraging sparse and dense feature combinations for sentiment classification. 2017,&
[54]
Giatsoglou
M,
Vozalis
M G,
Diamantaras
K.
Sentiment analysis leveraging emotions and word embeddings.
Expert Syst Appl,
2017, 69: 214-224
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sentiment analysis leveraging emotions and word embeddings&author=Giatsoglou M&author=Vozalis M G&author=Diamantaras K&publication_year=2017&journal=Expert Syst Appl&volume=69&pages=214-224
[55]
Harris Z S. Distributional structure. WORD, 1954, 10: 146--162.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Harris Z S. Distributional structure. WORD, 1954, 10: 146--162&
[56]
Bengio Y, Ducharme R, Vincent P, et al. A neural probabilistic language model. J Mach Learn Res, 2003, 3: 1137--1155.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bengio Y, Ducharme R, Vincent P, et al. A neural probabilistic language model. J Mach Learn Res, 2003, 3: 1137--1155&
[57]
Collobert R, Weston J. A unified architecture for natural language processing. In: Proceedings of International Conference on Machine Learning, Helsinki, 2008. 160--167.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Collobert R, Weston J. A unified architecture for natural language processing. In: Proceedings of International Conference on Machine Learning, Helsinki, 2008. 160--167&
[58]
Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space. In: Proceedings of International Conference on Learning Representations (ICLR), Scottsdale, 2013.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space. In: Proceedings of International Conference on Learning Representations (ICLR), Scottsdale, 2013&
[59]
Pennington J, Socher R, Manning D C. Glove: global vectors for word representation. In: Proceedings of Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, 2014. 1532--1543.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Pennington J, Socher R, Manning D C. Glove: global vectors for word representation. In: Proceedings of Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, 2014. 1532--1543&
[60]
Joulin A, Grave E, Bojanowski P, et al. Bag of tricks for efficient text classification. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, 2017. 427--431.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Joulin A, Grave E, Bojanowski P, et al. Bag of tricks for efficient text classification. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, 2017. 427--431&
[61]
Zou W Y, Socher R, Cer D, et al. Bilingual word embeddings for phrase-based machine translation. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Seattle, 2013. 1393--1398.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zou W Y, Socher R, Cer D, et al. Bilingual word embeddings for phrase-based machine translation. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Seattle, 2013. 1393--1398&
[62]
Devlin J, Chang M W, Lee K, et al. BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, 2019. 4171--4186.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Devlin J, Chang M W, Lee K, et al. BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, 2019. 4171--4186&
[63]
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. In: Proceedings of the 31st Annual Conference on Neural Information Processing Systems, Long Beach, 2017. 6000--6010.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. In: Proceedings of the 31st Annual Conference on Neural Information Processing Systems, Long Beach, 2017. 6000--6010&
[64]
Tang D Y, Wei F R, Yang N, et al. Learning sentiment-specific word embedding for twitter sentiment classification. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore, 2014. 1555--1565.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tang D Y, Wei F R, Yang N, et al. Learning sentiment-specific word embedding for twitter sentiment classification. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore, 2014. 1555--1565&
[65]
Zhou H W, Chen L, Shi F L, et al. Learning bilingual sentiment word embeddings for cross-language sentiment classification. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, Beijing, 2015. 430--440.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhou H W, Chen L, Shi F L, et al. Learning bilingual sentiment word embeddings for cross-language sentiment classification. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, Beijing, 2015. 430--440&
[66]
Fu P, Lin Z, Yuan F C, et al. Learning sentiment-specific word embedding via global sentiment representation. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, 2018. 4808--4815.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fu P, Lin Z, Yuan F C, et al. Learning sentiment-specific word embedding via global sentiment representation. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, 2018. 4808--4815&
[67]
Erhan D, Courville A, Vincent P. Why does unsupervised pre-training help deep learning? J Mach Learn Res, 2010, 11: 625--660.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Erhan D, Courville A, Vincent P. Why does unsupervised pre-training help deep learning? J Mach Learn Res, 2010, 11: 625--660&
[68]
Patterson J, Gibson A. Deep Learning. Sebastopol: O'Reilly Media, 2017.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Patterson J, Gibson A. Deep Learning. Sebastopol: O'Reilly Media, 2017&
[69]
Ballard D H. Modular learning in neural networks. In: Proceeding the 6th National Conference on Artificial Intelligence, Seattle, 1987. 279--284.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ballard D H. Modular learning in neural networks. In: Proceeding the 6th National Conference on Artificial Intelligence, Seattle, 1987. 279--284&
[70]
Bengio
Y.
Learning Deep Architectures for AI.
FNT Machine Learning,
2009, 2: 1-127
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Learning Deep Architectures for AI&author=Bengio Y&publication_year=2009&journal=FNT Machine Learning&volume=2&pages=1-127
[71]
Vincent P, Larochelle H, Bengio Y, et al. Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, Helsinki, 2008. 1096--1103.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Vincent P, Larochelle H, Bengio Y, et al. Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, Helsinki, 2008. 1096--1103&
[72]
Rong
W,
Nie
Y,
Ouyang
Y.
Auto-encoder based bagging architecture for sentiment analysis.
J Visual Languages Computing,
2014, 25: 840-849
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Auto-encoder based bagging architecture for sentiment analysis&author=Rong W&author=Nie Y&author=Ouyang Y&publication_year=2014&journal=J Visual Languages Computing&volume=25&pages=840-849
[73]
Zhou H W, Chen L, Huang D G. Cross-lingual sentiment classification based on denoising autoencoder. In: Proceedings of the 3rd CCF Conference on Natural Language Processing and Chinese Computing, Shenzhen, 2014. 181--192.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhou H W, Chen L, Huang D G. Cross-lingual sentiment classification based on denoising autoencoder. In: Proceedings of the 3rd CCF Conference on Natural Language Processing and Chinese Computing, Shenzhen, 2014. 181--192&
[74]
Hinton
G E,
Osindero
S,
Teh
Y W.
A fast learning algorithm for deep belief nets..
Neural Computation,
2006, 18: 1527-1554
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=A fast learning algorithm for deep belief nets.&author=Hinton G E&author=Osindero S&author=Teh Y W&publication_year=2006&journal=Neural Computation&volume=18&pages=1527-1554
[75]
Jin Y, Zhang H, Du D L. Improving deep belief networks via delta rule for sentiment classification. In: Proceedings of the 28th International Conference on Tools with Artificial Intelligence, San Jose, 2016. 410--414.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Jin Y, Zhang H, Du D L. Improving deep belief networks via delta rule for sentiment classification. In: Proceedings of the 28th International Conference on Tools with Artificial Intelligence, San Jose, 2016. 410--414&
[76]
Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems, Montréal, 2014. 2672--2680.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems, Montréal, 2014. 2672--2680&
[77]
Goodfellow I J. Tutorial: generative adversarial networks. In: Proceedings of Neural Information Processing Systems, 2016.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Goodfellow I J. Tutorial: generative adversarial networks. In: Proceedings of Neural Information Processing Systems, 2016&
[78]
Li
Y,
Pan
Q,
Wang
S.
A Generative Model for category text generation.
Inf Sci,
2018, 450: 301-315
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Generative Model for category text generation&author=Li Y&author=Pan Q&author=Wang S&publication_year=2018&journal=Inf Sci&volume=450&pages=301-315
[79]
Vlachostergiou
A,
Caridakis
G,
Mylonas
P.
Learning Representations of Natural Language Texts with Generative Adversarial Networks at Document, Sentence, and Aspect Level.
Algorithms,
2018, 11: 164
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Learning Representations of Natural Language Texts with Generative Adversarial Networks at Document, Sentence, and Aspect Level&author=Vlachostergiou A&author=Caridakis G&author=Mylonas P&publication_year=2018&journal=Algorithms&volume=11&pages=164
[80]
Li J, Madry A, Peebles J, el al. On the limitations of first-order approximation in GAN dynamics. In: Proceedings of the 35th International Conference on Machine Learning, Stockholm, 2018. 3011--3019.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li J, Madry A, Peebles J, el al. On the limitations of first-order approximation in GAN dynamics. In: Proceedings of the 35th International Conference on Machine Learning, Stockholm, 2018. 3011--3019&
[81]
Zhang Y Z, Gan Z, Fan K, et al. Adversarial feature matching for text generation. In: Proceedings of the 34th International Conference on Machine Learning, Sydney, 2017. 4006--4015.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang Y Z, Gan Z, Fan K, et al. Adversarial feature matching for text generation. In: Proceedings of the 34th International Conference on Machine Learning, Sydney, 2017. 4006--4015&
[82]
Lecun
Y,
Bottou
L,
Bengio
Y.
Gradient-based learning applied to document recognition.
Proc IEEE,
1998, 86: 2278-2324
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gradient-based learning applied to document recognition&author=Lecun Y&author=Bottou L&author=Bengio Y&publication_year=1998&journal=Proc IEEE&volume=86&pages=2278-2324
[83]
Collobert R, Weston J, Bottou L, et al. Natural Language Processing (Almost) from Scratch. Journal of Machine Learning Research, 2011, 12:2493--2537.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Collobert R, Weston J, Bottou L, et al. Natural Language Processing (Almost) from Scratch. Journal of Machine Learning Research, 2011, 12:2493--2537&
[84]
Wang
J,
Sun
J,
Lin
H.
Convolutional neural networks for expert recommendation in community question answering.
Sci China Inf Sci,
2017, 60: 110102
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Convolutional neural networks for expert recommendation in community question answering&author=Wang J&author=Sun J&author=Lin H&publication_year=2017&journal=Sci China Inf Sci&volume=60&pages=110102
[85]
Kim Y. Convolutional neural networks for sentence classification. In: Proceedings of Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, 2014. 1746--1751.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kim Y. Convolutional neural networks for sentence classification. In: Proceedings of Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, 2014. 1746--1751&
[86]
Conneau A, Schwenk H, Barrault L, et al. Very deep convolutional networks for text classification. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, Valencia, 2017. 1107--1116.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Conneau A, Schwenk H, Barrault L, et al. Very deep convolutional networks for text classification. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, Valencia, 2017. 1107--1116&
[87]
Johnson R, Zhang T. Deep pyramid convolutional neural networks for text categorization. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (ACL), Vancouver, 2017. 562--570.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Johnson R, Zhang T. Deep pyramid convolutional neural networks for text categorization. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (ACL), Vancouver, 2017. 562--570&
[88]
Elman
J L.
Finding Structure in Time.
Cognitive Sci,
1990, 14: 179-211
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Finding Structure in Time&author=Elman J L&publication_year=1990&journal=Cognitive Sci&volume=14&pages=179-211
[89]
Ko W J, Tseng B H, Lee H Y. Recurrent neural network based language modeling with controllable external memory. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, 2017. 5705--5709.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ko W J, Tseng B H, Lee H Y. Recurrent neural network based language modeling with controllable external memory. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, 2017. 5705--5709&
[90]
Hochreiter
S.
The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions.
Int J Unc Fuzz Knowl Based Syst,
1998, 06: 107-116
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions&author=Hochreiter S&publication_year=1998&journal=Int J Unc Fuzz Knowl Based Syst&volume=06&pages=107-116
[91]
Hochreiter
S,
Schmidhuber
J.
Long Short-Term Memory.
Neural Computation,
1997, 9: 1735-1780
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Long Short-Term Memory&author=Hochreiter S&author=Schmidhuber J&publication_year=1997&journal=Neural Computation&volume=9&pages=1735-1780
[92]
Cho K, Merrienboer B V, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, 2014. 1724--1734.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cho K, Merrienboer B V, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, 2014. 1724--1734&
[93]
Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. In: Proceedings of International Conference on Learning Representations (ICLR), San Diego, 2015.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. In: Proceedings of International Conference on Learning Representations (ICLR), San Diego, 2015&
[94]
Mishra A, Tamilselvam S, Dasgupta R, Cognition-cognizant sentiment analysis with multitask subjectivity summarization based on annotators' gaze behavior. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, 2018, 5884--5891.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mishra A, Tamilselvam S, Dasgupta R, Cognition-cognizant sentiment analysis with multitask subjectivity summarization based on annotators' gaze behavior. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, 2018, 5884--5891&
[95]
Long Y F, Lu Q, Xiang R, et al. A cognition based attention model for sentiment analysis. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Copenhagen, 2017. 462--471.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Long Y F, Lu Q, Xiang R, et al. A cognition based attention model for sentiment analysis. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Copenhagen, 2017. 462--471&
[96]
Chen H M, Sun M S, Tu C C, et al. Neural sentiment classification with user and product attention. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Austin, 2016. 1650--1659.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chen H M, Sun M S, Tu C C, et al. Neural sentiment classification with user and product attention. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Austin, 2016. 1650--1659&
[97]
Wang W, Pan S J, Dahlmeier D, et al. Coupled multi-layer attentions for co-extraction of aspect and opinion terms. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, 2017.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang W, Pan S J, Dahlmeier D, et al. Coupled multi-layer attentions for co-extraction of aspect and opinion terms. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, 2017&
[98]
Giannakopoulos A, Musat C, Hossmann A. Unsupervised aspect term extraction with B-LSTM & CRF using automatically labelled datasets. In: Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, Copenhagen, 2017. 180--188.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Giannakopoulos A, Musat C, Hossmann A. Unsupervised aspect term extraction with B-LSTM & CRF using automatically labelled datasets. In: Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, Copenhagen, 2017. 180--188&
[99]
Ghosaly D, Akhtary M S, Chauhany D, et al. Contextual inter-modal attention for multi-modal sentiment analysis. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Brussels, 2018. 3454--3466.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ghosaly D, Akhtary M S, Chauhany D, et al. Contextual inter-modal attention for multi-modal sentiment analysis. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Brussels, 2018. 3454--3466&
[100]
Goller C, Küchler A. Learning task dependent distributed representations by backpropagation through structure. IEEE Trans Neur Netw, 1996, 1: 347--352.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Goller C, Küchler A. Learning task dependent distributed representations by backpropagation through structure. IEEE Trans Neur Netw, 1996, 1: 347--352&
[101]
Socher R, Pennington J, Huang E H, et al. Semi-supervised recursive autoencoders for predicting sentiment distributions. In: Proceedings of Conference on EMNLP, Scotland, 2011. 151--161.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Socher R, Pennington J, Huang E H, et al. Semi-supervised recursive autoencoders for predicting sentiment distributions. In: Proceedings of Conference on EMNLP, Scotland, 2011. 151--161&
[102]
Socher R, Perelygin A, Wu J, et al. Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Seattle, 2013. 1631--1642.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Socher R, Perelygin A, Wu J, et al. Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Seattle, 2013. 1631--1642&
[103]
Socher R, Manning D C, Ng Y. A. Learning continuous phrase representations and syntactic parsing with recursive neural networks. In: Proceedings of Neural Information Processing Systems, Deep Learning and Unsupervised Feature Learning Workshop, 2010.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Socher R, Manning D C, Ng Y. A. Learning continuous phrase representations and syntactic parsing with recursive neural networks. In: Proceedings of Neural Information Processing Systems, Deep Learning and Unsupervised Feature Learning Workshop, 2010&
[104]
Socher R, Manning D C, Huval B, et al. Semantic compositionality through recursive matrix-vector spaces. In: Proceedings of Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Jeju Island, 2012. 1201--1211.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Socher R, Manning D C, Huval B, et al. Semantic compositionality through recursive matrix-vector spaces. In: Proceedings of Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Jeju Island, 2012. 1201--1211&
[105]
Mnih V, Kavukcuoglu K, Silver D, et al. Playing atari with deep reinforcement learning. 2013,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mnih V, Kavukcuoglu K, Silver D, et al. Playing atari with deep reinforcement learning. 2013,&
[106]
Li Y. Deep reinforcement learning: an overview. 2017,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li Y. Deep reinforcement learning: an overview. 2017,&
[107]
Mousavi S S, Schukat M, Howley E. Deep reinforcement learning: an overview. In: Proceedings of SAI Intelligent Systems Conference, 2018. 426--440.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mousavi S S, Schukat M, Howley E. Deep reinforcement learning: an overview. In: Proceedings of SAI Intelligent Systems Conference, 2018. 426--440&
[108]
Sutton R S, Barto A G. Reinforcement Learning: An Introduction. Cambridge: MIT Press, 2018.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sutton R S, Barto A G. Reinforcement Learning: An Introduction. Cambridge: MIT Press, 2018&
[109]
Mnih
V,
Kavukcuoglu
K,
Silver
D.
Human-level control through deep reinforcement learning.
Nature,
2015, 518: 529-533
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Human-level control through deep reinforcement learning&author=Mnih V&author=Kavukcuoglu K&author=Silver D&publication_year=2015&journal=Nature&volume=518&pages=529-533
[110]
Williams
R J.
Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Mach Learn,
1992, 8: 229-256
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Simple statistical gradient-following algorithms for connectionist reinforcement learning&author=Williams R J&publication_year=1992&journal=Mach Learn&volume=8&pages=229-256
[111]
Zhang T Y, Huang M L, Zhao L. Learning structured representation for text classification via reinforcement learning. In: Proceedings of AAAI Conference on Artificial Intelligence, New Orleans, 2018.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang T Y, Huang M L, Zhao L. Learning structured representation for text classification via reinforcement learning. In: Proceedings of AAAI Conference on Artificial Intelligence, New Orleans, 2018&
[112]
Yogatama D, Blunsom P, Dyer C, et al. Learning to compose words into sentences with reinforcement learning. In: International Conference on Learning Representations (ICLR), Toulon, 2017.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yogatama D, Blunsom P, Dyer C, et al. Learning to compose words into sentences with reinforcement learning. In: International Conference on Learning Representations (ICLR), Toulon, 2017&
[113]
Chen M, Wang S, Liang P P, et al. Multimodal sentiment analysis with word-level fusion and reinforcement learning. In: Proceedings of the 19th ACM International Conference on Multimodal Interaction (ICMI), Glasgow, 2017. 163--171.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chen M, Wang S, Liang P P, et al. Multimodal sentiment analysis with word-level fusion and reinforcement learning. In: Proceedings of the 19th ACM International Conference on Multimodal Interaction (ICMI), Glasgow, 2017. 163--171&
[114]
Su P-H, Gašić M, Mrkšić N, et al. On-line active reward learning for policy optimisation in spoken dialogue systems. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, 2016. 2431--2441.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Su P-H, Gašić M, Mrkšić N, et al. On-line active reward learning for policy optimisation in spoken dialogue systems. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, 2016. 2431--2441&
[115]
Kamthe S, Deisenroth M P. Data-efficient reinforcement learning with probabilistic model predictive control. In: Proceedings of the 21st International Conference on Artificial Intelligence and Statistics, Lanzarote, 2018. 1701--1710.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kamthe S, Deisenroth M P. Data-efficient reinforcement learning with probabilistic model predictive control. In: Proceedings of the 21st International Conference on Artificial Intelligence and Statistics, Lanzarote, 2018. 1701--1710&
[116]
Feng
X,
Qin
B,
Liu
T.
A language-independent neural network for event detection.
Sci China Inf Sci,
2018, 61: 092106
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A language-independent neural network for event detection&author=Feng X&author=Qin B&author=Liu T&publication_year=2018&journal=Sci China Inf Sci&volume=61&pages=092106
[117]
Gonzlez J, Pla F, Hurtado L. ELiRF-UPV at SemEval-2017 task 4: sentiment analysis using deep learning. In: Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval), Vancouver, 2017. 723--727.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gonzlez J, Pla F, Hurtado L. ELiRF-UPV at SemEval-2017 task 4: sentiment analysis using deep learning. In: Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval), Vancouver, 2017. 723--727&
[118]
Tang D Y, Qin B, Liu T. Document modeling with gated recurrent neural network for sentiment classification. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Lisbon, 2015. 1422--1432.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tang D Y, Qin B, Liu T. Document modeling with gated recurrent neural network for sentiment classification. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Lisbon, 2015. 1422--1432&
[119]
Maas A L, Daly R E, Pham P T, et al. Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Portland, 2011. 142--150.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Maas A L, Daly R E, Pham P T, et al. Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Portland, 2011. 142--150&
[120]
Diao Q, Qiu M, Wu C-Y. Jointly modeling aspects, ratings and sentiments for movie recommendation (JMARS). In: Proceedings of the 20th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, New York, 2014. 193--202.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Diao Q, Qiu M, Wu C-Y. Jointly modeling aspects, ratings and sentiments for movie recommendation (JMARS). In: Proceedings of the 20th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, New York, 2014. 193--202&
[121]
McAuley J, Leskovec J. Addressing complex and subjective product-related queries with customer reviews. In: Proceedings of the 25th International World Wide Web Conference, Montréal, 2016. 625--635.
Google Scholar
http://scholar.google.com/scholar_lookup?title=McAuley J, Leskovec J. Addressing complex and subjective product-related queries with customer reviews. In: Proceedings of the 25th International World Wide Web Conference, Montréal, 2016. 625--635&
[122]
Li X, Bing L D, Lam W, et al. Transformation networks for target-oriented sentiment classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, 2018. 946--956.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li X, Bing L D, Lam W, et al. Transformation networks for target-oriented sentiment classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, 2018. 946--956&
[123]
Go A, Bhayani R, Huang L. Twitter sentiment classification using distant supervision. 2009. http://pdfs.semanticscholar.org/52e2/bd533323ddf97073d034bae40a46eda55f34.pdf.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Go A, Bhayani R, Huang L. Twitter sentiment classification using distant supervision. 2009. http://pdfs.semanticscholar.org/52e2/bd533323ddf97073d034bae40a46eda55f34.pdf&
[124]
Saif H, Ferndez M, He Y, et al. Evaluation datasets for Twitter sentiment analysis: a survey and a new dataset, the STS-Gold. In: Proceedings of the 1st International Workshop on Emotion and Sentiment in Social and Expressive Media: Approaches and Perspectives from AI, Turin, 2013. 9--21.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Saif H, Ferndez M, He Y, et al. Evaluation datasets for Twitter sentiment analysis: a survey and a new dataset, the STS-Gold. In: Proceedings of the 1st International Workshop on Emotion and Sentiment in Social and Expressive Media: Approaches and Perspectives from AI, Turin, 2013. 9--21&
[125]
Zadeh A, Zellers R, Pincus E, et al. MOSI: multimodal corpus of sentiment intensity and subjectivity analysis in online opinion videos. 2016,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zadeh A, Zellers R, Pincus E, et al. MOSI: multimodal corpus of sentiment intensity and subjectivity analysis in online opinion videos. 2016,&
[126]
Zadeh A, Liang P P, Vanbriesen J, et al. Multimodal language analysis in the wild: CMU-MOSEI dataset and interpretable dynamic fusion graph. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, 2018. 2236--2246.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zadeh A, Liang P P, Vanbriesen J, et al. Multimodal language analysis in the wild: CMU-MOSEI dataset and interpretable dynamic fusion graph. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, 2018. 2236--2246&
[127]
Pang B, Lee L. Seeing stars: exploiting class relationships for sentiment categorization with respect to rating scales. In: Proceedings of the Association for Computational Linguistics, 2005. 115--124.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Pang B, Lee L. Seeing stars: exploiting class relationships for sentiment categorization with respect to rating scales. In: Proceedings of the Association for Computational Linguistics, 2005. 115--124&
[128]
Sanders N J. Sanders-Twitter sentiment corpus. Sanders Analytics LLC, 2011.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sanders N J. Sanders-Twitter sentiment corpus. Sanders Analytics LLC, 2011&
[129]
Wojatzki M, Ruppert E, Holschneider S, et al. GermEval 2017: shared task on aspect-based sentiment in social media customer Feedback. In: Proceedings of the GermEval 2017 Shared Task, Berlin, 2017.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wojatzki M, Ruppert E, Holschneider S, et al. GermEval 2017: shared task on aspect-based sentiment in social media customer Feedback. In: Proceedings of the GermEval 2017 Shared Task, Berlin, 2017&
[130]
Nabil M, Aly M, Atiya A F. ASTD: arabic sentiment tweets dataset. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Lisbon, 2015. 2515--2519.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nabil M, Aly M, Atiya A F. ASTD: arabic sentiment tweets dataset. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Lisbon, 2015. 2515--2519&
[131]
Yang Z C, Yang D Y, Dyer C. Hierarchical attention networks for document classification. In: Proceedings of Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, 2016. 1480--1489.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yang Z C, Yang D Y, Dyer C. Hierarchical attention networks for document classification. In: Proceedings of Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, 2016. 1480--1489&
[132]
Ganin Y, Ustinova E, Ajakan H, et al. Domain-Adversarial Training of Neural Networks. Journal of Machine Learning Research, 2016, 27:1--35.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ganin Y, Ustinova E, Ajakan H, et al. Domain-Adversarial Training of Neural Networks. Journal of Machine Learning Research, 2016, 27:1--35&
[133]
Li Z, Zhang Y, Wei Y, et al. End-to-end adversarial memory network for cross-domain sentiment classification. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI), Melbourne, 2017. 2237--2243.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li Z, Zhang Y, Wei Y, et al. End-to-end adversarial memory network for cross-domain sentiment classification. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI), Melbourne, 2017. 2237--2243&
[134]
Zhai S F, Zhang Z F. Semisupervised autoencoder for sentiment analysis. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix, 2016. 1394--1400.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhai S F, Zhang Z F. Semisupervised autoencoder for sentiment analysis. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix, 2016. 1394--1400&
[135]
Yin R C, Li P, Wang B. Sentiment lexical-augmented convolutional neural networks for sentiment analysis. In: Proceedings of the 2nd International Conference on Data Science in Cyberspace (DSC), Shenzhen, 2017. 630--635.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yin R C, Li P, Wang B. Sentiment lexical-augmented convolutional neural networks for sentiment analysis. In: Proceedings of the 2nd International Conference on Data Science in Cyberspace (DSC), Shenzhen, 2017. 630--635&
[136]
Tai K S, Socher R, Manning C D. Improved semantic representations from tree-structured long short-term memory networks. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing, 2015. 1556--1566.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tai K S, Socher R, Manning C D. Improved semantic representations from tree-structured long short-term memory networks. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing, 2015. 1556--1566&
[137]
Kokkinos F, Potamianos A. Structural attention neural networks for improved sentiment analysis. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, Valencia, 2017. 586--591.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kokkinos F, Potamianos A. Structural attention neural networks for improved sentiment analysis. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, Valencia, 2017. 586--591&
[138]
Mousa A, Schuller B. Contextual bidirectional long short-term memory recurrent neural network language models: a generative approach to sentiment analysis. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, Valencia, 2017. 1023--1032.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mousa A, Schuller B. Contextual bidirectional long short-term memory recurrent neural network language models: a generative approach to sentiment analysis. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, Valencia, 2017. 1023--1032&
[139]
Wang Y Q, Huang M L, Zhao L, et al. Attention-based LSTM for aspect-level sentiment classification. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Austin, 2016. 606--615.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang Y Q, Huang M L, Zhao L, et al. Attention-based LSTM for aspect-level sentiment classification. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Austin, 2016. 606--615&
[140]
Tay Y, Tuan L A, Hui S C. Learning to attend via word-aspect associative fusion for aspect-based sentiment analysis. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, 2018. 5956--5963.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tay Y, Tuan L A, Hui S C. Learning to attend via word-aspect associative fusion for aspect-based sentiment analysis. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, 2018. 5956--5963&
[141]
Zhang M S, Zhang Y, Vo D. Gated neural networks for targeted sentiment analysis. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix, 2016. 3087--3093.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang M S, Zhang Y, Vo D. Gated neural networks for targeted sentiment analysis. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix, 2016. 3087--3093&
[142]
Yang J, Yang R Q, Wang C J, et al. Multi-entity aspect-based sentiment analysis with context, entity and aspect memory. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, 2018. 6029--6036.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yang J, Yang R Q, Wang C J, et al. Multi-entity aspect-based sentiment analysis with context, entity and aspect memory. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, 2018. 6029--6036&
[143]
He R, Lee W S, Ng H T, et al. Effective attention modeling for aspect-level sentiment classification. In: Proceedings of the 27th International Conference on Computational Linguistics, Santa Fe, 2018. 1121--1131.
Google Scholar
http://scholar.google.com/scholar_lookup?title=He R, Lee W S, Ng H T, et al. Effective attention modeling for aspect-level sentiment classification. In: Proceedings of the 27th International Conference on Computational Linguistics, Santa Fe, 2018. 1121--1131&
[144]
Chen P, Sun Z Q, Bing L D, et al. Recurrent attention network on memory for aspect sentiment analysis. In: Proceedings of Conference on Empirical Methods in Natural Language Processing (EMNLP), Copenhagen, 2017. 452--461.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chen P, Sun Z Q, Bing L D, et al. Recurrent attention network on memory for aspect sentiment analysis. In: Proceedings of Conference on Empirical Methods in Natural Language Processing (EMNLP), Copenhagen, 2017. 452--461&
[145]
Ma Y K, Peng H Y, Cambria E. Targeted aspect-based sentiment analysis via embedding commonsense knowledge into an attentive LSTM. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, 2018. 5876--5883.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ma Y K, Peng H Y, Cambria E. Targeted aspect-based sentiment analysis via embedding commonsense knowledge into an attentive LSTM. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, 2018. 5876--5883&
[146]
Huang B, Carley K M. Parameterized convolutional neural networks for aspect level sentiment classification. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Brussels, 2018. 1091--1096.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Huang B, Carley K M. Parameterized convolutional neural networks for aspect level sentiment classification. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Brussels, 2018. 1091--1096&
[147]
Jakob N, Gurevych I. Extracting opinion targets in a single- and cross-domain setting with conditional random fields. In: Proceedings of Empirical Methods in Natural Language Processing, Massachusetts, 2010. 1035--1045.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Jakob N, Gurevych I. Extracting opinion targets in a single- and cross-domain setting with conditional random fields. In: Proceedings of Empirical Methods in Natural Language Processing, Massachusetts, 2010. 1035--1045&
[148]
Wang W, Pan S J, Dahlmeier D, et al. Recursive neural conditional random fields for aspect-based sentiment analysis. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Austin, 2016. 616--626.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang W, Pan S J, Dahlmeier D, et al. Recursive neural conditional random fields for aspect-based sentiment analysis. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Austin, 2016. 616--626&
[149]
Guo L D, Jiang S Y, Du W J, et al. Recurrent neural CRF for aspect term extraction with dependency transmission. In: Proceedings of CCF International Conference on Natural Language Processing and Chinese Computing, 2018. 378--390.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Guo L D, Jiang S Y, Du W J, et al. Recurrent neural CRF for aspect term extraction with dependency transmission. In: Proceedings of CCF International Conference on Natural Language Processing and Chinese Computing, 2018. 378--390&
[150]
Xue W, Zhou W B, Li T, et al. MTNA: a neural multi-task model for aspect category classification and aspect term extraction on restaurant reviews. In: Proceedings of the 8th International Joint Conference on Natural Language Processing, Taipei, 2017. 151--156.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Xue W, Zhou W B, Li T, et al. MTNA: a neural multi-task model for aspect category classification and aspect term extraction on restaurant reviews. In: Proceedings of the 8th International Joint Conference on Natural Language Processing, Taipei, 2017. 151--156&
[151]
Li X, Lam W. Deep multi-task learning for aspect term extraction with memory interaction. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Copenhagen, 2017. 2886--2892.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li X, Lam W. Deep multi-task learning for aspect term extraction with memory interaction. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Copenhagen, 2017. 2886--2892&
[152]
Li X, Bing L D, Li P J. Aspect term extraction with history attention and selective transformation. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, 2018. 4194--4200.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li X, Bing L D, Li P J. Aspect term extraction with history attention and selective transformation. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, 2018. 4194--4200&
[153]
Ren
Y,
Ji
D.
Neural networks for deceptive opinion spam detection: An empirical study.
Inf Sci,
2017, 385-386: 213-224
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Neural networks for deceptive opinion spam detection: An empirical study&author=Ren Y&author=Ji D&publication_year=2017&journal=Inf Sci&volume=385-386&pages=213-224
[154]
Bandhakavi
A,
Wiratunga
N,
Padmanabhan
D.
Lexicon based feature extraction for emotion text classification.
Pattern Recognition Lett,
2017, 93: 133-142
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lexicon based feature extraction for emotion text classification&author=Bandhakavi A&author=Wiratunga N&author=Padmanabhan D&publication_year=2017&journal=Pattern Recognition Lett&volume=93&pages=133-142
[155]
Felbo B, Mislove A, Søaard A. Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Copenhagen, 2017. 1615--1625.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Felbo B, Mislove A, Søaard A. Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Copenhagen, 2017. 1615--1625&
[156]
Kim Y, Lee H. AttnConvnet at SemEval-2018 task 1: attention-based convolutional neural networks for multi-label emotion classification. In: Proceedings of the 12th International Workshop on Semantic Evaluation, New Orleans, 2018. 141--145.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kim Y, Lee H. AttnConvnet at SemEval-2018 task 1: attention-based convolutional neural networks for multi-label emotion classification. In: Proceedings of the 12th International Workshop on Semantic Evaluation, New Orleans, 2018. 141--145&
[157]
Yu J F, Marujo L, Jiang J, et al. Improving multi-label emotion classification via sentiment classification with dual attention transfer network. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Brussels, 2018. 1097--1102.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yu J F, Marujo L, Jiang J, et al. Improving multi-label emotion classification via sentiment classification with dual attention transfer network. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Brussels, 2018. 1097--1102&
[158]
Wang Y Q, Feng S, Wang D L, et al. Multi-label chinese microblog emotion classification via convolutional neural network. In: Proceedings of Asia-Pacific Web Conference, 2016. 567--580.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang Y Q, Feng S, Wang D L, et al. Multi-label chinese microblog emotion classification via convolutional neural network. In: Proceedings of Asia-Pacific Web Conference, 2016. 567--580&
[159]
Abdul-Mageed M, Ungar L. EmoNet: fine-grained emotion detection with gated recurrent neural networks. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, 2017. 718--728.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Abdul-Mageed M, Ungar L. EmoNet: fine-grained emotion detection with gated recurrent neural networks. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, 2017. 718--728&
[160]
Tafreshi S, Diab M. Emotion detection and classification in a multigenre corpus with joint multi-task deep learning. In: Proceedings of the 27th International Conference on Computational Linguistics, Santa Fe, 2018. 2905--2913.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tafreshi S, Diab M. Emotion detection and classification in a multigenre corpus with joint multi-task deep learning. In: Proceedings of the 27th International Conference on Computational Linguistics, Santa Fe, 2018. 2905--2913&
[161]
Chen
X,
Sun
Y,
Athiwaratkun
B.
Adversarial Deep Averaging Networks for Cross-Lingual Sentiment Classification.
Trans Association Comput Linguistics,
2018, 6: 557-570
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Adversarial Deep Averaging Networks for Cross-Lingual Sentiment Classification&author=Chen X&author=Sun Y&author=Athiwaratkun B&publication_year=2018&journal=Trans Association Comput Linguistics&volume=6&pages=557-570
[162]
Ruder S, Ghaffari P, Breslin J G. INSIGHT-1 at SemEval-2016 task 5: deep learning for multilingual aspect-based sentiment analysis. In: Proceedings of SemEval, San Diego, 2016. 330--336.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ruder S, Ghaffari P, Breslin J G. INSIGHT-1 at SemEval-2016 task 5: deep learning for multilingual aspect-based sentiment analysis. In: Proceedings of SemEval, San Diego, 2016. 330--336&
[163]
Becker W, Wehrmann J, Cagnini H E L, et al. An efficient deep neural architecture for multilingual Sentiment analysis in twitter. In: Proceedings of the 30th International Florida Artificial Intelligence Research Society Conference, Florida, 2017. 246--251.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Becker W, Wehrmann J, Cagnini H E L, et al. An efficient deep neural architecture for multilingual Sentiment analysis in twitter. In: Proceedings of the 30th International Florida Artificial Intelligence Research Society Conference, Florida, 2017. 246--251&
[164]
Attia M, Samih Y, ElKahky A, et al. Multilingual multi-class sentiment classification using convolutional neural networks. In: Proceedings of the 11th International Conference on Language Resources and Evaluation (LREC), Miyazaki, 2018.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Attia M, Samih Y, ElKahky A, et al. Multilingual multi-class sentiment classification using convolutional neural networks. In: Proceedings of the 11th International Conference on Language Resources and Evaluation (LREC), Miyazaki, 2018&
[165]
Can E F, Ezen-Can A, Can F. Multilingual sentiment analysis: an RNN-based framework for limited data. In: Proceedings of ACM SIGIR 2018 Workshop on Learning from Limited or Noisy Data, Ann Arbor, 2018.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Can E F, Ezen-Can A, Can F. Multilingual sentiment analysis: an RNN-based framework for limited data. In: Proceedings of ACM SIGIR 2018 Workshop on Learning from Limited or Noisy Data, Ann Arbor, 2018&
[166]
Akhtar M S, Sawant P, Sen S, et al. Solving data sparsity for aspect based sentiment analysis using cross-linguality and multi-linguality. In: Proceedings of NAACL-HLT, New Orleans, 2018. 572--582.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Akhtar M S, Sawant P, Sen S, et al. Solving data sparsity for aspect based sentiment analysis using cross-linguality and multi-linguality. In: Proceedings of NAACL-HLT, New Orleans, 2018. 572--582&
[167]
Wang W C, Feng S, Gao W. Personalized microblog sentiment classification via adversarial cross-lingual multi-task learning. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Brussels, 2018. 338--348.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang W C, Feng S, Gao W. Personalized microblog sentiment classification via adversarial cross-lingual multi-task learning. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Brussels, 2018. 338--348&
[168]
Cambria E, Hazarika D, Poria S, et al. Benchmarking multimodal sentiment analysis. In: Proceedings of International Conference on Computational Linguistics, Budapest, 2017. 166--179.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cambria E, Hazarika D, Poria S, et al. Benchmarking multimodal sentiment analysis. In: Proceedings of International Conference on Computational Linguistics, Budapest, 2017. 166--179&
[169]
Poria S, Cambria E, Hazarika D. Context-dependent sentiment analysis in user-generated videos. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, 2017. 873--883.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Poria S, Cambria E, Hazarika D. Context-dependent sentiment analysis in user-generated videos. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, 2017. 873--883&
[170]
Zadeh A, Chen M, Poria S. Tensor fusion network for multimodal sentiment analysis. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Copenhagen, 2017. 1103--1114.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zadeh A, Chen M, Poria S. Tensor fusion network for multimodal sentiment analysis. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Copenhagen, 2017. 1103--1114&
[171]
Zadeh A, Liang P P, Poria S, et al. Multi-attention recurrent network for human communication comprehension. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, 2018. 5642--5649.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zadeh A, Liang P P, Poria S, et al. Multi-attention recurrent network for human communication comprehension. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, 2018. 5642--5649&
[172]
Wu H B, Gu Y W, Sun S D, et al. Aspect-based opinion summarization with convolutional neural networks. In: Proceedings of International Joint Conference on Neural Networks, 2016. 3157--3163.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wu H B, Gu Y W, Sun S D, et al. Aspect-based opinion summarization with convolutional neural networks. In: Proceedings of International Joint Conference on Neural Networks, 2016. 3157--3163&
[173]
Li
Q,
Jin
Z,
Wang
C.
Mining opinion summarizations using convolutional neural networks in Chinese microblogging systems.
Knowledge-Based Syst,
2016, 107: 289-300
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mining opinion summarizations using convolutional neural networks in Chinese microblogging systems&author=Li Q&author=Jin Z&author=Wang C&publication_year=2016&journal=Knowledge-Based Syst&volume=107&pages=289-300
[174]
Wang L, Ling W. Neural network-based abstract generation for opinions and arguments. In: Proceedings of NAACL-HLT, San Diego, 2016. 47--57.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang L, Ling W. Neural network-based abstract generation for opinions and arguments. In: Proceedings of NAACL-HLT, San Diego, 2016. 47--57&
[175]
Yang M, Qu Q, Zhu J, et al. Cross-domain aspect/sentiment-aware abstractive review summarization. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, 2018. 1531--1534.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yang M, Qu Q, Zhu J, et al. Cross-domain aspect/sentiment-aware abstractive review summarization. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, 2018. 1531--1534&
[176]
Yang M, Qu Q, Shen Y. Aspect and sentiment aware abstractive review summarization. In: Proceedings of the 27th International Conference on Computational Linguistics, Santa Fe, 2018. 1110--1120.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yang M, Qu Q, Shen Y. Aspect and sentiment aware abstractive review summarization. In: Proceedings of the 27th International Conference on Computational Linguistics, Santa Fe, 2018. 1110--1120&
[177]
Angelidis S, Lapata M. Summarizing opinions: aspect extraction meets sentiment prediction and they are both weakly supervised. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Brussels, 2018. 3675--3686.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Angelidis S, Lapata M. Summarizing opinions: aspect extraction meets sentiment prediction and they are both weakly supervised. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Brussels, 2018. 3675--3686&
[178]
Zhao
S,
Xu
Z,
Liu
L.
Towards Accurate Deceptive Opinions Detection Based on Word Order-Preserving CNN.
Math Problems Eng,
2018, 2018(1): 1-9
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Towards Accurate Deceptive Opinions Detection Based on Word Order-Preserving CNN&author=Zhao S&author=Xu Z&author=Liu L&publication_year=2018&journal=Math Problems Eng&volume=2018(1)&pages=1-9
[179]
Li
L,
Qin
B,
Ren
W.
Document representation and feature combination for deceptive spam review detection.
Neurocomputing,
2017, 254: 33-41
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Document representation and feature combination for deceptive spam review detection&author=Li L&author=Qin B&author=Ren W&publication_year=2017&journal=Neurocomputing&volume=254&pages=33-41
[180]
Ren Y F, Yue Z. Deceptive opinion spam detection using neural network. In: Proceedings of the 26th International Conference on Computational Linguistics, Osaka, 2016. 140--150.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ren Y F, Yue Z. Deceptive opinion spam detection using neural network. In: Proceedings of the 26th International Conference on Computational Linguistics, Osaka, 2016. 140--150&
[181]
Zhang
W,
Du
Y,
Yoshida
T.
DRI-RCNN: An approach to deceptive review identification using recurrent convolutional neural network.
Inf Processing Manage,
2018, 54: 576-592
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=DRI-RCNN: An approach to deceptive review identification using recurrent convolutional neural network&author=Zhang W&author=Du Y&author=Yoshida T&publication_year=2018&journal=Inf Processing Manage&volume=54&pages=576-592
[182]
Yadav V, Bethard S. A survey on recent advances in named entity recognition from deep learning models. In: Proceedings of the 27th International Conference on Computational Linguistics, Santa Fe, 2018. 2145--2158.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yadav V, Bethard S. A survey on recent advances in named entity recognition from deep learning models. In: Proceedings of the 27th International Conference on Computational Linguistics, Santa Fe, 2018. 2145--2158&
[183]
Qiu J Z, Tang J, Ma H, et al. DeepInf: social influence prediction with deep learning. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, 2018. 2110--2119.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Qiu J Z, Tang J, Ma H, et al. DeepInf: social influence prediction with deep learning. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, 2018. 2110--2119&
[184]
Wang H W, Zhang F Z, Hou M, et al. SHINE: signed heterogeneous information network embedding for sentiment link prediction. In: Proceedings of the 11th ACM International Conference on Web Search and Data Mining, Marina Del Rey, 2018. 592--600.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang H W, Zhang F Z, Hou M, et al. SHINE: signed heterogeneous information network embedding for sentiment link prediction. In: Proceedings of the 11th ACM International Conference on Web Search and Data Mining, Marina Del Rey, 2018. 592--600&
[185]
Medhat
W,
Hassan
A,
Korashy
H.
Sentiment analysis algorithms and applications: A survey.
Ain Shams Eng J,
2014, 5: 1093-1113
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sentiment analysis algorithms and applications: A survey&author=Medhat W&author=Hassan A&author=Korashy H&publication_year=2014&journal=Ain Shams Eng J&volume=5&pages=1093-1113