logo

SCIENCE CHINA Information Sciences, Volume 62 , Issue 11 : 212206(2019) https://doi.org/10.1007/s11432-018-9897-8

Stability analysis of switched positive nonlinear systems: an invariant ray approach

More info
  • ReceivedDec 29, 2018
  • AcceptedApr 29, 2019
  • PublishedSep 19, 2019

Abstract


References

[1] Farina L, and Rinaldi S. Positive Linear Systems. New York: Wiley, 2000. Google Scholar

[2] Silva-Navarro G, Alvarez-Gallegos J. Sign and stability of equilibria in quasi-monotone positive nonlinear systems. IEEE Trans Automat Contr, 1997, 42: 403-407 CrossRef Google Scholar

[3] Shim H, Jo N H. Determination of Stability With Respect to Positive Orthant for a Class of Positive Nonlinear Systems. IEEE Trans Automat Contr, 2008, 53: 1329-1334 CrossRef Google Scholar

[4] Haddad W M, Chellaboina V S. Stability and dissipativity theory for nonnegative dynamical systems: a unified analysis framework for biological and physiological systems. NOnlinear Anal-Real World Appl, 2005, 6: 35-65 CrossRef Google Scholar

[5] Feyzmahdavian H R, Besselink B, Johansson M. Stability Analysis of Monotone Systems via Max-Separable Lyapunov Functions. IEEE Trans Automat Contr, 2018, 63: 643-656 CrossRef Google Scholar

[6] Anh Ngoc P H. A Perron-Frobenius theorem for a class of positive quasi-polynomial matrices. Appl Math Lett, 2006, 19: 747-751 CrossRef Google Scholar

[7] Lemmens B, Nussbaum R. Nonlinear Perron-Frobenius Theory. Cambridge: Cambridge University Press, 2012. Google Scholar

[8] De Leenheer P, Aeyels D. Stability properties of equilibria of classes of cooperative systems. IEEE Trans Automat Contr, 2001, 46: 1996-2001 CrossRef Google Scholar

[9] Aeyels D, De Leenheer P. Extension of the Perron--Frobenius Theorem to Homogeneous Systems. SIAM J Control Optim, 2002, 41: 563-582 CrossRef Google Scholar

[10] Mason O, Verwoerd M. Observations on the stability properties of cooperative systems. Syst Control Lett, 2009, 58: 461-467 CrossRef Google Scholar

[11] Liberzon D. Switching in Systems and Control. Boston: Birkhauser, 2003. Google Scholar

[12] Sun Z, Ge S S. Stability Theory of Switched Dynamical Systems. Berlin: Springer, 2011. Google Scholar

[13] Hespanha J P. Uniform Stability of Switched Linear Systems: Extensions of LaSalle's Invariance Principle. IEEE Trans Automat Contr, 2004, 49: 470-482 CrossRef Google Scholar

[14] Zhao J, Hill D J. On stability, $L_2$ gain and $H_{\infty}$ control for switched systems. Automatica, 2008, 44: 1220-1232 CrossRef Google Scholar

[15] Zhao X, Zhang L, Shi P. Stability and Stabilization of Switched Linear Systems With Mode-Dependent Average Dwell Time. IEEE Trans Automat Contr, 2012, 57: 1809-1815 CrossRef Google Scholar

[16] Yang H, Jiang B, Cocquempot V. Stabilization of Switched Nonlinear Systems With Unstable Modes. Berlin: Springer, 2014. Google Scholar

[17] Yang H, Jiang B, Tao G. Robust Stability of Switched Nonlinear Systems With Switching Uncertainties. IEEE Trans Automat Contr, 2016, 61: 2531-2537 CrossRef Google Scholar

[18] Liu X, Zhao Q, Zhong S. Stability analysis of a class of switched nonlinear systems with delays: A trajectory-based comparison method. Automatica, 2018, 91: 36-42 CrossRef Google Scholar

[19] Ma R, An S, Fu J. Dwell-time-based stabilization of switched positive systems with only unstable subsystems. Sci China Inform Sci, 2019. Google Scholar

[20] Zeng X, Lin W, Yang Z. Linear invariant generation for verification of nonlinear hybrid systems via conservative approximation. Sci China Inf Sci, 2017, 60: 39102 CrossRef Google Scholar

[21] Ogura M, Preciado V M. Stability of Spreading Processes over Time-Varying Large-Scale Networks. IEEE Trans Netw Sci Eng, 2016, 3: 44-57 CrossRef Google Scholar

[22] Colaneri P, Middleton R H, Chen Z. Convexity of the cost functional in an optimal control problem for a class of positive switched systems. Automatica, 2014, 50: 1227-1234 CrossRef Google Scholar

[23] Hernandez-Vargas E A, Colaneri P, Middleton R H. Switching Strategies to Mitigate HIV Mutation. IEEE Trans Contr Syst Technol, 2014, 22: 1623-1628 CrossRef Google Scholar

[24] Mason O, Shorten R. On Linear Copositive Lyapunov Functions and the Stability of Switched Positive Linear Systems. IEEE Trans Automat Contr, 2007, 52: 1346-1349 CrossRef Google Scholar

[25] Liu X, Dang C. Stability Analysis of Positive Switched Linear Systems With Delays. IEEE Trans Automat Contr, 2011, 56: 1684-1690 CrossRef Google Scholar

[26] Blanchini F, Colaneri P, Valcher M E. Co-Positive Lyapunov Functions for the Stabilization of Positive Switched Systems. IEEE Trans Automat Contr, 2012, 57: 3038-3050 CrossRef Google Scholar

[27] Wu Z R, Sun Y G. On Easily Verifiable Conditions for the Existence of Common Linear Copositive Lyapunov Functions. IEEE Trans Automat Contr, 2013, 58: 1862-1865 CrossRef Google Scholar

[28] Zhao X, Zhang L, Shi P. Stability of switched positive linear systems with average dwell time switching. Automatica, 2012, 48: 1132-1137 CrossRef Google Scholar

[29] Zhao X, Liu X, Yin S. Improved results on stability of continuous-time switched positive linear systems. Automatica, 2014, 50: 614-621 CrossRef Google Scholar

[30] Pastravanu O C, Matcovschi M H. Max-type copositive Lyapunov functions for switching positive linear systems. Automatica, 2014, 50: 3323-3327 CrossRef Google Scholar

[31] Lian J, Liu J. New results on stability of switched positive systems: an average dwell-time approach. IET Contr Theor Appl, 2013, 7: 1651-1658 CrossRef Google Scholar

[32] Zhang J S, Wang Y W, Xiao J W. Stability analysis of switched positive linear systems with stable and unstable subsystems. Int J Syst Sci, 2014, 45: 2458-2465 CrossRef Google Scholar

[33] Haddad W M, Chellaboina V, Nersesov S G. Hybrid nonnegative and computational dynamical systems. Math Problems Eng, 2002, 8: 493-515 CrossRef Google Scholar

[34] Dong J G. Stability of switched positive nonlinear systems. Int J Robust NOnlinear Control, 2016, 26: 3118-3129 CrossRef Google Scholar

[35] Bacciotti A, Rosier L. Liapunov functions and stability in control theory. Berlin: Springer-Verlag, 2005. Google Scholar

[36] Smith H L. Monotone Dynamical Systems, AMS, 1995. Google Scholar

[37] Sauer T. Numerical Analysis. 2nd ed. New York: Pearson Education, Inc., 2012. Google Scholar

[38] Lakshmikantham V, Leela S. Differential and Integral Inequalities: Theory and Applications: Volume I: Ordinary Differential Equations. New York: Academic Press, 1969. Google Scholar

[39] Rosier L. Homogeneous Lyapunov function for homogeneous continuous vector field. Syst Control Lett, 1992, 19: 467-473 CrossRef Google Scholar

[40] Hill C G. An Introduction to Chemical Engineering Kinetics and Reactor Design. Hoboken: John Wiley and Sons, 1977. Google Scholar