References
[1]
Farina L, and Rinaldi S. Positive Linear Systems. New York: Wiley, 2000.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Farina L, and Rinaldi S. Positive Linear Systems. New York: Wiley, 2000&
[2]
Silva-Navarro
G,
Alvarez-Gallegos
J.
Sign and stability of equilibria in quasi-monotone positive nonlinear systems.
IEEE Trans Automat Contr,
1997, 42: 403-407
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sign and stability of equilibria in quasi-monotone positive nonlinear systems&author=Silva-Navarro G&author=Alvarez-Gallegos J&publication_year=1997&journal=IEEE Trans Automat Contr&volume=42&pages=403-407
[3]
Shim
H,
Jo
N H.
Determination of Stability With Respect to Positive Orthant for a Class of Positive Nonlinear Systems.
IEEE Trans Automat Contr,
2008, 53: 1329-1334
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Determination of Stability With Respect to Positive Orthant for a Class of Positive Nonlinear Systems&author=Shim H&author=Jo N H&publication_year=2008&journal=IEEE Trans Automat Contr&volume=53&pages=1329-1334
[4]
Haddad
W M,
Chellaboina
V S.
Stability and dissipativity theory for nonnegative dynamical systems: a unified analysis framework for biological and physiological systems.
NOnlinear Anal-Real World Appl,
2005, 6: 35-65
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stability and dissipativity theory for nonnegative dynamical systems: a unified analysis framework for biological and physiological systems&author=Haddad W M&author=Chellaboina V S&publication_year=2005&journal=NOnlinear Anal-Real World Appl&volume=6&pages=35-65
[5]
Feyzmahdavian
H R,
Besselink
B,
Johansson
M.
Stability Analysis of Monotone Systems via Max-Separable Lyapunov Functions.
IEEE Trans Automat Contr,
2018, 63: 643-656
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stability Analysis of Monotone Systems via Max-Separable Lyapunov Functions&author=Feyzmahdavian H R&author=Besselink B&author=Johansson M&publication_year=2018&journal=IEEE Trans Automat Contr&volume=63&pages=643-656
[6]
Anh Ngoc
P H.
A Perron-Frobenius theorem for a class of positive quasi-polynomial matrices.
Appl Math Lett,
2006, 19: 747-751
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Perron-Frobenius theorem for a class of positive quasi-polynomial matrices&author=Anh Ngoc P H&publication_year=2006&journal=Appl Math Lett&volume=19&pages=747-751
[7]
Lemmens B, Nussbaum R. Nonlinear Perron-Frobenius Theory. Cambridge: Cambridge University Press, 2012.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lemmens B, Nussbaum R. Nonlinear Perron-Frobenius Theory. Cambridge: Cambridge University Press, 2012&
[8]
De Leenheer
P,
Aeyels
D.
Stability properties of equilibria of classes of cooperative systems.
IEEE Trans Automat Contr,
2001, 46: 1996-2001
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stability properties of equilibria of classes of cooperative systems&author=De Leenheer P&author=Aeyels D&publication_year=2001&journal=IEEE Trans Automat Contr&volume=46&pages=1996-2001
[9]
Aeyels
D,
De Leenheer
P.
Extension of the Perron--Frobenius Theorem to Homogeneous Systems.
SIAM J Control Optim,
2002, 41: 563-582
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Extension of the Perron--Frobenius Theorem to Homogeneous Systems&author=Aeyels D&author=De Leenheer P&publication_year=2002&journal=SIAM J Control Optim&volume=41&pages=563-582
[10]
Mason
O,
Verwoerd
M.
Observations on the stability properties of cooperative systems.
Syst Control Lett,
2009, 58: 461-467
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Observations on the stability properties of cooperative systems&author=Mason O&author=Verwoerd M&publication_year=2009&journal=Syst Control Lett&volume=58&pages=461-467
[11]
Liberzon D. Switching in Systems and Control. Boston: Birkhauser, 2003.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Liberzon D. Switching in Systems and Control. Boston: Birkhauser, 2003&
[12]
Sun Z, Ge S S. Stability Theory of Switched Dynamical Systems. Berlin: Springer, 2011.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sun Z, Ge S S. Stability Theory of Switched Dynamical Systems. Berlin: Springer, 2011&
[13]
Hespanha
J P.
Uniform Stability of Switched Linear Systems: Extensions of LaSalle's Invariance Principle.
IEEE Trans Automat Contr,
2004, 49: 470-482
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Uniform Stability of Switched Linear Systems: Extensions of LaSalle's Invariance Principle&author=Hespanha J P&publication_year=2004&journal=IEEE Trans Automat Contr&volume=49&pages=470-482
[14]
Zhao
J,
Hill
D J.
On stability, $L_2$ gain and $H_{\infty}$ control for switched systems.
Automatica,
2008, 44: 1220-1232
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=On stability, $L_2$ gain and $H_{\infty}$ control for switched systems&author=Zhao J&author=Hill D J&publication_year=2008&journal=Automatica&volume=44&pages=1220-1232
[15]
Zhao
X,
Zhang
L,
Shi
P.
Stability and Stabilization of Switched Linear Systems With Mode-Dependent Average Dwell Time.
IEEE Trans Automat Contr,
2012, 57: 1809-1815
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stability and Stabilization of Switched Linear Systems With Mode-Dependent Average Dwell Time&author=Zhao X&author=Zhang L&author=Shi P&publication_year=2012&journal=IEEE Trans Automat Contr&volume=57&pages=1809-1815
[16]
Yang H, Jiang B, Cocquempot V. Stabilization of Switched Nonlinear Systems With Unstable Modes. Berlin: Springer, 2014.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yang H, Jiang B, Cocquempot V. Stabilization of Switched Nonlinear Systems With Unstable Modes. Berlin: Springer, 2014&
[17]
Yang
H,
Jiang
B,
Tao
G.
Robust Stability of Switched Nonlinear Systems With Switching Uncertainties.
IEEE Trans Automat Contr,
2016, 61: 2531-2537
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Robust Stability of Switched Nonlinear Systems With Switching Uncertainties&author=Yang H&author=Jiang B&author=Tao G&publication_year=2016&journal=IEEE Trans Automat Contr&volume=61&pages=2531-2537
[18]
Liu
X,
Zhao
Q,
Zhong
S.
Stability analysis of a class of switched nonlinear systems with delays: A trajectory-based comparison method.
Automatica,
2018, 91: 36-42
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stability analysis of a class of switched nonlinear systems with delays: A trajectory-based comparison method&author=Liu X&author=Zhao Q&author=Zhong S&publication_year=2018&journal=Automatica&volume=91&pages=36-42
[19]
Ma R, An S, Fu J. Dwell-time-based stabilization of switched positive systems with only unstable subsystems. Sci China Inform Sci, 2019.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ma R, An S, Fu J. Dwell-time-based stabilization of switched positive systems with only unstable subsystems. Sci China Inform Sci, 2019&
[20]
Zeng
X,
Lin
W,
Yang
Z.
Linear invariant generation for verification of nonlinear hybrid systems via conservative approximation.
Sci China Inf Sci,
2017, 60: 39102
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Linear invariant generation for verification of nonlinear hybrid systems via conservative approximation&author=Zeng X&author=Lin W&author=Yang Z&publication_year=2017&journal=Sci China Inf Sci&volume=60&pages=39102
[21]
Ogura
M,
Preciado
V M.
Stability of Spreading Processes over Time-Varying Large-Scale Networks.
IEEE Trans Netw Sci Eng,
2016, 3: 44-57
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stability of Spreading Processes over Time-Varying Large-Scale Networks&author=Ogura M&author=Preciado V M&publication_year=2016&journal=IEEE Trans Netw Sci Eng&volume=3&pages=44-57
[22]
Colaneri
P,
Middleton
R H,
Chen
Z.
Convexity of the cost functional in an optimal control problem for a class of positive switched systems.
Automatica,
2014, 50: 1227-1234
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Convexity of the cost functional in an optimal control problem for a class of positive switched systems&author=Colaneri P&author=Middleton R H&author=Chen Z&publication_year=2014&journal=Automatica&volume=50&pages=1227-1234
[23]
Hernandez-Vargas
E A,
Colaneri
P,
Middleton
R H.
Switching Strategies to Mitigate HIV Mutation.
IEEE Trans Contr Syst Technol,
2014, 22: 1623-1628
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Switching Strategies to Mitigate HIV Mutation&author=Hernandez-Vargas E A&author=Colaneri P&author=Middleton R H&publication_year=2014&journal=IEEE Trans Contr Syst Technol&volume=22&pages=1623-1628
[24]
Mason
O,
Shorten
R.
On Linear Copositive Lyapunov Functions and the Stability of Switched Positive Linear Systems.
IEEE Trans Automat Contr,
2007, 52: 1346-1349
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=On Linear Copositive Lyapunov Functions and the Stability of Switched Positive Linear Systems&author=Mason O&author=Shorten R&publication_year=2007&journal=IEEE Trans Automat Contr&volume=52&pages=1346-1349
[25]
Liu
X,
Dang
C.
Stability Analysis of Positive Switched Linear Systems With Delays.
IEEE Trans Automat Contr,
2011, 56: 1684-1690
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stability Analysis of Positive Switched Linear Systems With Delays&author=Liu X&author=Dang C&publication_year=2011&journal=IEEE Trans Automat Contr&volume=56&pages=1684-1690
[26]
Blanchini
F,
Colaneri
P,
Valcher
M E.
Co-Positive Lyapunov Functions for the Stabilization of Positive Switched Systems.
IEEE Trans Automat Contr,
2012, 57: 3038-3050
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Co-Positive Lyapunov Functions for the Stabilization of Positive Switched Systems&author=Blanchini F&author=Colaneri P&author=Valcher M E&publication_year=2012&journal=IEEE Trans Automat Contr&volume=57&pages=3038-3050
[27]
Wu
Z R,
Sun
Y G.
On Easily Verifiable Conditions for the Existence of Common Linear Copositive Lyapunov Functions.
IEEE Trans Automat Contr,
2013, 58: 1862-1865
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=On Easily Verifiable Conditions for the Existence of Common Linear Copositive Lyapunov Functions&author=Wu Z R&author=Sun Y G&publication_year=2013&journal=IEEE Trans Automat Contr&volume=58&pages=1862-1865
[28]
Zhao
X,
Zhang
L,
Shi
P.
Stability of switched positive linear systems with average dwell time switching.
Automatica,
2012, 48: 1132-1137
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stability of switched positive linear systems with average dwell time switching&author=Zhao X&author=Zhang L&author=Shi P&publication_year=2012&journal=Automatica&volume=48&pages=1132-1137
[29]
Zhao
X,
Liu
X,
Yin
S.
Improved results on stability of continuous-time switched positive linear systems.
Automatica,
2014, 50: 614-621
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Improved results on stability of continuous-time switched positive linear systems&author=Zhao X&author=Liu X&author=Yin S&publication_year=2014&journal=Automatica&volume=50&pages=614-621
[30]
Pastravanu
O C,
Matcovschi
M H.
Max-type copositive Lyapunov functions for switching positive linear systems.
Automatica,
2014, 50: 3323-3327
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Max-type copositive Lyapunov functions for switching positive linear systems&author=Pastravanu O C&author=Matcovschi M H&publication_year=2014&journal=Automatica&volume=50&pages=3323-3327
[31]
Lian
J,
Liu
J.
New results on stability of switched positive systems: an average dwell-time approach.
IET Contr Theor Appl,
2013, 7: 1651-1658
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=New results on stability of switched positive systems: an average dwell-time approach&author=Lian J&author=Liu J&publication_year=2013&journal=IET Contr Theor Appl&volume=7&pages=1651-1658
[32]
Zhang
J S,
Wang
Y W,
Xiao
J W.
Stability analysis of switched positive linear systems with stable and unstable subsystems.
Int J Syst Sci,
2014, 45: 2458-2465
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stability analysis of switched positive linear systems with stable and unstable subsystems&author=Zhang J S&author=Wang Y W&author=Xiao J W&publication_year=2014&journal=Int J Syst Sci&volume=45&pages=2458-2465
[33]
Haddad
W M,
Chellaboina
V,
Nersesov
S G.
Hybrid nonnegative and computational dynamical systems.
Math Problems Eng,
2002, 8: 493-515
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hybrid nonnegative and computational dynamical systems&author=Haddad W M&author=Chellaboina V&author=Nersesov S G&publication_year=2002&journal=Math Problems Eng&volume=8&pages=493-515
[34]
Dong
J G.
Stability of switched positive nonlinear systems.
Int J Robust NOnlinear Control,
2016, 26: 3118-3129
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stability of switched positive nonlinear systems&author=Dong J G&publication_year=2016&journal=Int J Robust NOnlinear Control&volume=26&pages=3118-3129
[35]
Bacciotti A, Rosier L. Liapunov functions and stability in control theory. Berlin: Springer-Verlag, 2005.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bacciotti A, Rosier L. Liapunov functions and stability in control theory. Berlin: Springer-Verlag, 2005&
[36]
Smith H L. Monotone Dynamical Systems, AMS, 1995.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Smith H L. Monotone Dynamical Systems, AMS, 1995&
[37]
Sauer T. Numerical Analysis. 2nd ed. New York: Pearson Education, Inc., 2012.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sauer T. Numerical Analysis. 2nd ed. New York: Pearson Education, Inc., 2012&
[38]
Lakshmikantham V, Leela S. Differential and Integral Inequalities: Theory and Applications: Volume I: Ordinary Differential Equations. New York: Academic Press, 1969.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lakshmikantham V, Leela S. Differential and Integral Inequalities: Theory and Applications: Volume I: Ordinary Differential Equations. New York: Academic Press, 1969&
[39]
Rosier
L.
Homogeneous Lyapunov function for homogeneous continuous vector field.
Syst Control Lett,
1992, 19: 467-473
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Homogeneous Lyapunov function for homogeneous continuous vector field&author=Rosier L&publication_year=1992&journal=Syst Control Lett&volume=19&pages=467-473
[40]
Hill C G. An Introduction to Chemical Engineering Kinetics and Reactor Design. Hoboken: John Wiley and Sons, 1977.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hill C G. An Introduction to Chemical Engineering Kinetics and Reactor Design. Hoboken: John Wiley and Sons, 1977&