SCIENCE CHINA Information Sciences, Volume 64 , Issue 3 : 139205(2021) https://doi.org/10.1007/s11432-018-9886-8

SVD based scale transform invariant observable degree for LTI system

More info
  • ReceivedAug 28, 2018
  • AcceptedMar 1, 2019
  • PublishedApr 14, 2020


There is no abstract available for this article.


This work was supported by Zhejiang Provincial Natural Science Foundation (Grant No. LR17F030005), National Natural Science Foundation of China (Grant Nos. 61773147, U1509203), and Open Project Program of the State Key Laboratory of Management and Control for Complex System in 2017.


[1] Ham F M, Brown R G. Observability, Eigenvalues, and Kalman Filtering. IEEE Trans Aerosp Electron Syst, 1983, AES-19: 269-273 CrossRef ADS Google Scholar

[2] Dong J, Mo B. The method of system observability analysis using pseudo-inverse of system observability matrix. In: Proceedings of the 32nd Chinese Control Conference, Xi'an, 2013. 55--59. Google Scholar

[3] Rotella F, Zambettakis I. A Note on Functional Observability. IEEE Trans Automat Contr, 2016, 61: 3197-3202 CrossRef Google Scholar

[4] Bianchin G, Frasca P, Gasparri A. The Observability Radius of Networks. IEEE Trans Automat Contr, 2017, 62: 3006-3013 CrossRef Google Scholar

[5] William L. B. Modern Control Theory. 3rd ed. Upper Saddle River: Prentice Hall, 1990. Google Scholar

[6] Zeng S, Ishii H, Allgower F. Sampled Observability and State Estimation of Linear Discrete Ensembles. IEEE Trans Automat Contr, 2017, 62: 2406-2418 CrossRef Google Scholar

[7] Ge Q, Ma J, Chen S. Observable Degree Analysis to Match Estimation Performance for Wireless Tracking Networks. Asian J Control, 2017, 19: 1259-1270 CrossRef Google Scholar

[8] Ma Y, Hu J. Counter examples for degree of obervarbility analysis method based on SVD theory. J Chin Interial Tech, 2008, 16: 448--452. Google Scholar

[9] Shuai P, Chen D, Jiang Y. Observable degree analysis method of integrated GPS/SINS navigation system. J Astronaut, 2004, 25: 219--224. Google Scholar