References
[1]
Xu J, Chen D, Lv J, et al. Software Automation (in Chinese). Beijing: Tsinghua University Press, 1994.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Xu J, Chen D, Lv J, et al. Software Automation (in Chinese). Beijing: Tsinghua University Press, 1994&
[2]
Mei
H,
Zhang
L.
Can big data bring a breakthrough for software automation?.
Sci China Inf Sci,
2018, 61: 056101
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Can big data bring a breakthrough for software automation?&author=Mei H&author=Zhang L&publication_year=2018&journal=Sci China Inf Sci&volume=61&pages=056101
[3]
Potvin
R,
Levenberg
J.
Why Google stores billions of lines of code in a single repository.
Commun ACM,
2016, 59: 78-87
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Why Google stores billions of lines of code in a single repository&author=Potvin R&author=Levenberg J&publication_year=2016&journal=Commun ACM&volume=59&pages=78-87
[4]
Hindle
A,
Barr
E T,
Gabel
M.
On the naturalness of software.
Commun ACM,
2016, 59: 122-131
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=On the naturalness of software&author=Hindle A&author=Barr E T&author=Gabel M&publication_year=2016&journal=Commun ACM&volume=59&pages=122-131
[5]
Nguyen A T, Nguyen T N. Graph-based statistical language model for code. In: Proceedings of the 37th IEEE/ACM International Conference on Software Engineering (ICSE-15), Florence, 2015. 858--868.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nguyen A T, Nguyen T N. Graph-based statistical language model for code. In: Proceedings of the 37th IEEE/ACM International Conference on Software Engineering (ICSE-15), Florence, 2015. 858--868&
[6]
Gu X D, Zhang H Y, Zhang D M, et al. Deep API learning. In: Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE-16), Seattle, 2016. 631--642.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gu X D, Zhang H Y, Zhang D M, et al. Deep API learning. In: Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE-16), Seattle, 2016. 631--642&
[7]
Chen C Y, Su T, Meng G Z, et al. From UI design image to GUI skeleton: a neural machine translator to bootstrap mobile GUI implementation. In: Proceedings of the 40th International Conference on Software Engineering (ICSE-18), Gothenburg, 2018. 665--676.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chen C Y, Su T, Meng G Z, et al. From UI design image to GUI skeleton: a neural machine translator to bootstrap mobile GUI implementation. In: Proceedings of the 40th International Conference on Software Engineering (ICSE-18), Gothenburg, 2018. 665--676&
[8]
Liu Z X, Xia X, Hassan A E, et al. Neural-machine-translation-based commit message generation: how far are we? In: Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering (ASE-18), Montpellier, 2018. 373--384.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Liu Z X, Xia X, Hassan A E, et al. Neural-machine-translation-based commit message generation: how far are we? In: Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering (ASE-18), Montpellier, 2018. 373--384&
[9]
Li H W, Li S R, Sun J M, et al. Improving API caveats accessibility by mining API caveats knowledge graph. In: Proceedings of the 34th IEEE International Conference on Software Maintenance and Evolution (ICSME-18), Madrid, 2018. 183--193.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li H W, Li S R, Sun J M, et al. Improving API caveats accessibility by mining API caveats knowledge graph. In: Proceedings of the 34th IEEE International Conference on Software Maintenance and Evolution (ICSME-18), Madrid, 2018. 183--193&