References
[1]
Gazi
V,
Passino
K M.
Stability Analysis of Social Foraging Swarms.
IEEE Trans Syst Man Cybern B,
2004, 34: 539-557
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stability Analysis of Social Foraging Swarms&author=Gazi V&author=Passino K M&publication_year=2004&journal=IEEE Trans Syst Man Cybern B&volume=34&pages=539-557
[2]
Olfati-Saber
R.
Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory.
IEEE Trans Automat Contr,
2006, 51: 401-420
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory&author=Olfati-Saber R&publication_year=2006&journal=IEEE Trans Automat Contr&volume=51&pages=401-420
[3]
Dimarogonas
D V,
Kyriakopoulos
K J.
On the Rendezvous Problem for Multiple Nonholonomic Agents.
IEEE Trans Automat Contr,
2007, 52: 916-922
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=On the Rendezvous Problem for Multiple Nonholonomic Agents&author=Dimarogonas D V&author=Kyriakopoulos K J&publication_year=2007&journal=IEEE Trans Automat Contr&volume=52&pages=916-922
[4]
Fax J A, Murray R M. Information flow and cooperative control of vehicle formations. IEEE Trans Automat Contr, 2004, 49: 1453--1464.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fax J A, Murray R M. Information flow and cooperative control of vehicle formations. IEEE Trans Automat Contr, 2004, 49: 1453--1464&
[5]
Lin
Z.
Control design in the presence of actuator saturation: from individual systems to multi-agent systems.
Sci China Inf Sci,
2019, 62: 026201
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Control design in the presence of actuator saturation: from individual systems to multi-agent systems&author=Lin Z&publication_year=2019&journal=Sci China Inf Sci&volume=62&pages=026201
[6]
Yu
Y,
Zeng
Z,
Li
Z.
Event-triggered encirclement control of multi-agent systems with bearing rigidity.
Sci China Inf Sci,
2017, 60: 110203
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Event-triggered encirclement control of multi-agent systems with bearing rigidity&author=Yu Y&author=Zeng Z&author=Li Z&publication_year=2017&journal=Sci China Inf Sci&volume=60&pages=110203
[7]
Yu
W,
Wang
H,
Hong
H.
Distributed cooperative anti-disturbance control of multi-agent systems: an overview.
Sci China Inf Sci,
2017, 60: 110202
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Distributed cooperative anti-disturbance control of multi-agent systems: an overview&author=Yu W&author=Wang H&author=Hong H&publication_year=2017&journal=Sci China Inf Sci&volume=60&pages=110202
[8]
Yu W W, Wen G H, Chen G R, et al. Distributed Cooperative Control of Multi-agent Systems. Singapore: Wiley/Higher Education Press, 2016.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yu W W, Wen G H, Chen G R, et al. Distributed Cooperative Control of Multi-agent Systems. Singapore: Wiley/Higher Education Press, 2016&
[9]
Cortés
J.
Finite-time convergent gradient flows with applications to network consensus.
Automatica,
2006, 42: 1993-2000
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Finite-time convergent gradient flows with applications to network consensus&author=Cortés J&publication_year=2006&journal=Automatica&volume=42&pages=1993-2000
[10]
Liu
X,
Lam
J,
Yu
W.
Finite-Time Consensus of Multiagent Systems With a Switching Protocol..
IEEE Trans Neural Netw Learning Syst,
2016, 27: 853-862
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Finite-Time Consensus of Multiagent Systems With a Switching Protocol.&author=Liu X&author=Lam J&author=Yu W&publication_year=2016&journal=IEEE Trans Neural Netw Learning Syst&volume=27&pages=853-862
[11]
Wang
X,
Hong
Y.
Finite-Time Consensus for Multi-Agent Networks with Second-Order Agent Dynamics.
IFAC Proc Volumes,
2008, 41: 15185-15190
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Finite-Time Consensus for Multi-Agent Networks with Second-Order Agent Dynamics&author=Wang X&author=Hong Y&publication_year=2008&journal=IFAC Proc Volumes&volume=41&pages=15185-15190
[12]
Suiyang Khoo
,
Lihua Xie
,
Zhihong Man
.
Robust Finite-Time Consensus Tracking Algorithm for Multirobot Systems.
IEEE/ASME Trans Mechatron,
2009, 14: 219-228
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Robust Finite-Time Consensus Tracking Algorithm for Multirobot Systems&author=Suiyang Khoo &author=Lihua Xie &author=Zhihong Man &publication_year=2009&journal=IEEE/ASME Trans Mechatron&volume=14&pages=219-228
[13]
Li
S,
Du
H,
Lin
X.
Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics.
Automatica,
2011, 47: 1706-1712
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics&author=Li S&author=Du H&author=Lin X&publication_year=2011&journal=Automatica&volume=47&pages=1706-1712
[14]
Du
H,
He
Y,
Cheng
Y.
Finite-Time Synchronization of a Class of Second-Order Nonlinear Multi-Agent Systems Using Output Feedback Control.
IEEE Trans Circuits Syst I,
2014, 61: 1778-1788
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Finite-Time Synchronization of a Class of Second-Order Nonlinear Multi-Agent Systems Using Output Feedback Control&author=Du H&author=He Y&author=Cheng Y&publication_year=2014&journal=IEEE Trans Circuits Syst I&volume=61&pages=1778-1788
[15]
Yu
W,
Wang
H,
Cheng
F.
Second-Order Consensus in Multiagent Systems via Distributed Sliding Mode Control..
IEEE Trans Cybern,
2017, 47: 1872-1881
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Second-Order Consensus in Multiagent Systems via Distributed Sliding Mode Control.&author=Yu W&author=Wang H&author=Cheng F&publication_year=2017&journal=IEEE Trans Cybern&volume=47&pages=1872-1881
[16]
Wang
H,
Yu
W,
Wen
G.
Finite-Time Bipartite Consensus for Multi-Agent Systems on Directed Signed Networks.
IEEE Trans Circuits Syst I,
2018, 65: 4336-4348
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Finite-Time Bipartite Consensus for Multi-Agent Systems on Directed Signed Networks&author=Wang H&author=Yu W&author=Wen G&publication_year=2018&journal=IEEE Trans Circuits Syst I&volume=65&pages=4336-4348
[17]
Du
H,
Li
S,
Qian
C.
Finite-Time Attitude Tracking Control of Spacecraft With Application to Attitude Synchronization.
IEEE Trans Automat Contr,
2011, 56: 2711-2717
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Finite-Time Attitude Tracking Control of Spacecraft With Application to Attitude Synchronization&author=Du H&author=Li S&author=Qian C&publication_year=2011&journal=IEEE Trans Automat Contr&volume=56&pages=2711-2717
[18]
Andrieu
V,
Praly
L,
Astolfi
A.
Homogeneous Approximation, Recursive Observer Design, and Output Feedback.
SIAM J Control Optim,
2008, 47: 1814-1850
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Homogeneous Approximation, Recursive Observer Design, and Output Feedback&author=Andrieu V&author=Praly L&author=Astolfi A&publication_year=2008&journal=SIAM J Control Optim&volume=47&pages=1814-1850
[19]
Polyakov
A.
Nonlinear Feedback Design for Fixed-Time Stabilization of Linear Control Systems.
IEEE Trans Automat Contr,
2012, 57: 2106-2110
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nonlinear Feedback Design for Fixed-Time Stabilization of Linear Control Systems&author=Polyakov A&publication_year=2012&journal=IEEE Trans Automat Contr&volume=57&pages=2106-2110
[20]
Parsegov
S E,
Polyakov
A E,
Shcherbakov
P S.
Fixed-time Consensus Algorithm for Multi-agent Systems with Integrator Dynamics.
IFAC Proc Volumes,
2013, 46: 110-115
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fixed-time Consensus Algorithm for Multi-agent Systems with Integrator Dynamics&author=Parsegov S E&author=Polyakov A E&author=Shcherbakov P S&publication_year=2013&journal=IFAC Proc Volumes&volume=46&pages=110-115
[21]
Zuo
Z,
Tie
L.
A new class of finite-time nonlinear consensus protocols for multi-agent systems.
Int J Control,
2014, 87: 363-370
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A new class of finite-time nonlinear consensus protocols for multi-agent systems&author=Zuo Z&author=Tie L&publication_year=2014&journal=Int J Control&volume=87&pages=363-370
[22]
Hong
H,
Yu
W,
Wen
G.
Distributed Robust Fixed-Time Consensus for Nonlinear and Disturbed Multiagent Systems.
IEEE Trans Syst Man Cybern Syst,
2017, 47: 1464-1473
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Distributed Robust Fixed-Time Consensus for Nonlinear and Disturbed Multiagent Systems&author=Hong H&author=Yu W&author=Wen G&publication_year=2017&journal=IEEE Trans Syst Man Cybern Syst&volume=47&pages=1464-1473
[23]
Wang H, Yu W W, Wen G H, et al. Fixed-time consensus of nonlinear multi-agent systems with general directed topologies. IEEE Trans Circ Syst II Exp Briefs, in press, doi. 10.1109/TCSII.2018.2886298.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang H, Yu W W, Wen G H, et al. Fixed-time consensus of nonlinear multi-agent systems with general directed topologies. IEEE Trans Circ Syst II Exp Briefs, in press, doi. 10.1109/TCSII.2018.2886298&
[24]
Zuo Z Y. Nonsingular fixed-time consensus tracking for second-order multi-agent networks. Automatica, 2015, 54: 305--309.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zuo Z Y. Nonsingular fixed-time consensus tracking for second-order multi-agent networks. Automatica, 2015, 54: 305--309&
[25]
Fu
J,
Wang
J.
Fixed-time coordinated tracking for second-order multi-agent systems with bounded input uncertainties.
Syst Control Lett,
2016, 93: 1-12
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fixed-time coordinated tracking for second-order multi-agent systems with bounded input uncertainties&author=Fu J&author=Wang J&publication_year=2016&journal=Syst Control Lett&volume=93&pages=1-12
[26]
Hong H F, Yu W W, Fu J J, et al. A novel class of distributed fixed-time consensus protocols for second-order nonlinear and disturbed multi-agent systems. IEEE Trans Netw Sci Eng, in press, doi:10.1109/TNSE.2018.2873060.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hong H F, Yu W W, Fu J J, et al. A novel class of distributed fixed-time consensus protocols for second-order nonlinear and disturbed multi-agent systems. IEEE Trans Netw Sci Eng, in press, doi:10.1109/TNSE.2018.2873060&
[27]
Tian
B,
Zuo
Z,
Wang
H.
Leader-follower fixed-time consensus of multi-agent systems with high-order integrator dynamics.
Int J Control,
2017, 90: 1420-1427
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Leader-follower fixed-time consensus of multi-agent systems with high-order integrator dynamics&author=Tian B&author=Zuo Z&author=Wang H&publication_year=2017&journal=Int J Control&volume=90&pages=1420-1427
[28]
Ji
M,
Egerstedt
M.
Distributed Coordination Control of Multiagent Systems While Preserving Connectedness.
IEEE Trans Robot,
2007, 23: 693-703
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Distributed Coordination Control of Multiagent Systems While Preserving Connectedness&author=Ji M&author=Egerstedt M&publication_year=2007&journal=IEEE Trans Robot&volume=23&pages=693-703
[29]
Dimarogonas D V, Johansson K H. Decentralized connectivity maintenance in mobile networks with bounded inputs. In: Proceedings of IEEE International Conference on Robotics and Automation, Pasadena, 2008. 1507--1512.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dimarogonas D V, Johansson K H. Decentralized connectivity maintenance in mobile networks with bounded inputs. In: Proceedings of IEEE International Conference on Robotics and Automation, Pasadena, 2008. 1507--1512&
[30]
Gustavi
T,
Dimarogonas
D V,
Egerstedt
M.
Sufficient conditions for connectivity maintenance and rendezvous in leader-follower networks.
Automatica,
2010, 46: 133-139
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sufficient conditions for connectivity maintenance and rendezvous in leader-follower networks&author=Gustavi T&author=Dimarogonas D V&author=Egerstedt M&publication_year=2010&journal=Automatica&volume=46&pages=133-139
[31]
Su
H,
Wang
X,
Chen
G.
Rendezvous of multiple mobile agents with preserved network connectivity.
Syst Control Lett,
2010, 59: 313-322
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Rendezvous of multiple mobile agents with preserved network connectivity&author=Su H&author=Wang X&author=Chen G&publication_year=2010&journal=Syst Control Lett&volume=59&pages=313-322
[32]
Feng
Z,
Sun
C,
Hu
G.
Robust Connectivity Preserving Rendezvous of Multirobot Systems Under Unknown Dynamics and Disturbances.
IEEE Trans Control Netw Syst,
2017, 4: 725-735
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Robust Connectivity Preserving Rendezvous of Multirobot Systems Under Unknown Dynamics and Disturbances&author=Feng Z&author=Sun C&author=Hu G&publication_year=2017&journal=IEEE Trans Control Netw Syst&volume=4&pages=725-735
[33]
Cao
Y,
Ren
W,
Casbeer
D W.
Finite-Time Connectivity-Preserving Consensus of Networked Nonlinear Agents With Unknown Lipschitz Terms.
IEEE Trans Automat Contr,
2016, 61: 1700-1705
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Finite-Time Connectivity-Preserving Consensus of Networked Nonlinear Agents With Unknown Lipschitz Terms&author=Cao Y&author=Ren W&author=Casbeer D W&publication_year=2016&journal=IEEE Trans Automat Contr&volume=61&pages=1700-1705
[34]
Dong
J G.
Finite-time connectivity preservation rendezvous with disturbance rejection.
Automatica,
2016, 71: 57-61
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Finite-time connectivity preservation rendezvous with disturbance rejection&author=Dong J G&publication_year=2016&journal=Automatica&volume=71&pages=57-61
[35]
Hong H F, Yu W W, Fu J J, et al. Finite-time connectivity-preserving consensus for second-order nonlinear multi-agent systems. IEEE Trans Control Netw Syst, in press, doi. 10.1109/TCNS.2018.2808599.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hong H F, Yu W W, Fu J J, et al. Finite-time connectivity-preserving consensus for second-order nonlinear multi-agent systems. IEEE Trans Control Netw Syst, in press, doi. 10.1109/TCNS.2018.2808599&
[36]
Tian B L, Lu H C, Zuo Z Y, et al. Fixed-time leader-follower output feedback consensus for second-order multiagent systems. IEEE Trans Cybern, in press, doi. 10.1109/TCYB.2018.2794759.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tian B L, Lu H C, Zuo Z Y, et al. Fixed-time leader-follower output feedback consensus for second-order multiagent systems. IEEE Trans Cybern, in press, doi. 10.1109/TCYB.2018.2794759&
[37]
Zheng
Y,
Zhu
Y,
Wang
L.
Finite-time consensus of multiple second-order dynamic agents without velocity measurements.
Int J Syst Sci,
2014, 45: 579-588
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Finite-time consensus of multiple second-order dynamic agents without velocity measurements&author=Zheng Y&author=Zhu Y&author=Wang L&publication_year=2014&journal=Int J Syst Sci&volume=45&pages=579-588
[38]
Filippov A F. Differential Equations With Discontinuous Right-Hand Side, Mathematics and Its Applications (Soviet Series). Boston: Kluwer, 1988.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Filippov A F. Differential Equations With Discontinuous Right-Hand Side, Mathematics and Its Applications (Soviet Series). Boston: Kluwer, 1988&
[39]
Bhat S P, Bernstein D S. Finite time stability of homogeneous systems. In: Proceedings of the 1997 American Control Conference, Albuquerque, 1997. 2513--2514.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bhat S P, Bernstein D S. Finite time stability of homogeneous systems. In: Proceedings of the 1997 American Control Conference, Albuquerque, 1997. 2513--2514&
[40]
Ren W, Beard R W. Distributed Consensus in Multi-Vehicle Cooperative Control. London: Springer-Verlag, 2008.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ren W, Beard R W. Distributed Consensus in Multi-Vehicle Cooperative Control. London: Springer-Verlag, 2008&
[41]
Rouche N, Habets P, Laloy M. Stability Theory by Liapunov's Direct Method. New York: Springer-Verlag, 1977.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Rouche N, Habets P, Laloy M. Stability Theory by Liapunov's Direct Method. New York: Springer-Verlag, 1977&
[42]
Alvarez
J,
Orlov
I,
Acho
L.
An Invariance Principle for Discontinuous Dynamic Systems With Application to a Coulomb Friction Oscillator.
J Dyn Sys Meas Control,
2000, 122: 687
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=An Invariance Principle for Discontinuous Dynamic Systems With Application to a Coulomb Friction Oscillator&author=Alvarez J&author=Orlov I&author=Acho L&publication_year=2000&journal=J Dyn Sys Meas Control&volume=122&pages=687