SCIENCE CHINA Information Sciences, Volume 62 , Issue 12 : 222202(2019) https://doi.org/10.1007/s11432-018-9844-3

Event-triggered attitude tracking for rigid spacecraft

More info
  • ReceivedOct 9, 2018
  • AcceptedMar 4, 2019
  • PublishedNov 12, 2019



This work was supported by National Natural Science Foundation of China (Grant Nos. 61503027, 51675041). The authors would like to thank the associate editor and the anonymous reviewers for their suggestions which have improved the quality of the work.


[1] Sidi M J. Spacecraft dynamics and control. Cambridge: Cambridge University Press, 2000. Google Scholar

[2] Crouch P. Spacecraft attitude control and stabilization: Applications of geometric control theory to rigid body models. IEEE Trans Automat Contr, 1984, 29: 321-331 CrossRef Google Scholar

[3] Wang N, Zhang T W, Xu J Q. Formation control for networked spacecraft in deep space: with or without communication delays and with switching topology. Sci China Inf Sci, 2011, 54: 469-481 CrossRef Google Scholar

[4] Jin Y Q, Liu X D, Qiu W. Time-varying sliding mode control for a class of uncertain MIMO nonlinear system subject to control input constraint. Sci China Inf Sci, 2010, 53: 89-100 CrossRef Google Scholar

[5] Pukdeboon C. Extended state observer-based third-order sliding mode finite-time attitude tracking controller for rigid spacecraft. Sci China Inf Sci, 2019, 62: 012206 CrossRef Google Scholar

[6] Pukdeboon C, Zinober A S I, Thein M W L. Quasi-Continuous Higher Order Sliding-Mode Controllers for Spacecraft-Attitude-Tracking Maneuvers. IEEE Trans Ind Electron, 2010, 57: 1436-1444 CrossRef Google Scholar

[7] Xia Y, Zhu Z, Fu M. Attitude Tracking of Rigid Spacecraft With Bounded Disturbances. IEEE Trans Ind Electron, 2011, 58: 647-659 CrossRef Google Scholar

[8] Li Z K, Duan Z S. Distributed adaptive attitude synchronization of multiple spacecraft. Sci China Technol Sci, 2011, 54: 1992-1998 CrossRef Google Scholar

[9] Zhiyong Chen , Jie Huang . Attitude Tracking and Disturbance Rejection of Rigid Spacecraft by Adaptive Control. IEEE Trans Automat Contr, 2009, 54: 600-605 CrossRef Google Scholar

[10] Wencheng Luo , Yun-Chung Chu , Keck-Voon Ling . Inverse optimal adaptive control for attitude tracking of spacecraft. IEEE Trans Automat Contr, 2005, 50: 1639-1654 CrossRef Google Scholar

[11] Åström K J, Bo B. Comparison of periodic and event based sampling for first order stochastic systems. In: Proceedings of IFAC World Congress, Beijing, 1999. 5006--5011. Google Scholar

[12] Postoyan R, Bragagnolo M C, Galbrun E. Event-triggered tracking control of unicycle mobile robots. Automatica, 2015, 52: 302-308 CrossRef Google Scholar

[13] He N, Shi D. Event-Based Robust Sampled-Data Model Predictive Control: A Non-Monotonic Lyapunov Function Approach. IEEE Trans Circuits Syst I, 2015, 62: 2555-2564 CrossRef Google Scholar

[14] Huang N, Duan Z S, Zhao Y. Distributed consensus for multiple Euler-Lagrange systems: An event-triggered approach. Sci China Technol Sci, 2016, 59: 33-44 CrossRef Google Scholar

[15] Yu Y, Zeng Z, Li Z. Event-triggered encirclement control of multi-agent systems with bearing rigidity. Sci China Inf Sci, 2017, 60: 110203 CrossRef Google Scholar

[16] Sun S, Yang M F, Wang L. Event-triggered nonlinear attitude control for a rigid spacecraft. In: Proceedings of the 36th Chinese Control Conference, 2017. 7582--7586. Google Scholar

[17] Xing L T, Wen C Y, Liu Z T, et al. An event-triggered design scheme for spacecraft attitude control. In: Proceedings of IEEE Conference on Industrial Electronics and Applications, 2017. 1552--1557. Google Scholar

[18] Wu B, Shen Q, Cao X. Event-triggered attitude control of spacecraft. Adv Space Res, 2018, 61: 927-934 CrossRef ADS Google Scholar

[19] Zhang C, Wang J, Zhang D. Learning observer based and event-triggered control to spacecraft against actuator faults. Aerospace Sci Tech, 2018, 78: 522-530 CrossRef Google Scholar

[20] Han J. From PID to Active Disturbance Rejection Control. IEEE Trans Ind Electron, 2009, 56: 900-906 CrossRef Google Scholar

[21] Zheng Q, Gao Z Q. On practical applications of active disturbance rejection control. In: Proceedings of the 29th Chinese Control Conference, 2010. 6095--6100. Google Scholar

[22] Guo B Z, Wu Z H, Zhou H C. Active Disturbance Rejection Control Approach to Output-Feedback Stabilization of a Class of Uncertain Nonlinear Systems Subject to Stochastic Disturbance. IEEE Trans Automat Contr, 2016, 61: 1613-1618 CrossRef Google Scholar

[23] Li S, Yang X, Yang D. Active disturbance rejection control for high pointing accuracy and rotation speed. Automatica, 2009, 45: 1854-1860 CrossRef Google Scholar

[24] Sira-Ramirez H, Linares-Flores J, Garcia-Rodriguez C. On the Control of the Permanent Magnet Synchronous Motor: An Active Disturbance Rejection Control Approach. IEEE Trans Contr Syst Technol, 2014, 22: 2056-2063 CrossRef Google Scholar

[25] Tang S, Yang Q H, Qian S K. Height and attitude active disturbance rejection controller design of a small-scale helicopter. Sci China Inf Sci, 2015, 58: 032202 CrossRef Google Scholar

[26] Chen S, Xue W, Zhong S. On comparison of modified ADRCs for nonlinear uncertain systems with time delay. Sci China Inf Sci, 2018, 61: 070223 CrossRef Google Scholar

[27] Huang Y, Wang J, Shi D. Toward Event-Triggered Extended State Observer. IEEE Trans Automat Contr, 2018, 63: 1842-1849 CrossRef Google Scholar

[28] Shi D, Xue J, Zhao L. Event-Triggered Active Disturbance Rejection Control of DC Torque Motors. IEEE/ASME Trans Mechatron, 2017, 22: 2277-2287 CrossRef Google Scholar

[29] Yuan J S. Closed-loop manipulator control using quaternion feedback. IEEE J Robot Automat, 1988, 4: 434-440 CrossRef Google Scholar

[30] Lu K, Xia Y, Fu M. Controller design for rigid spacecraft attitude tracking with actuator saturation. Inf Sci, 2013, 220: 343-366 CrossRef Google Scholar

[31] Xia Y, Yang H, You X. Adaptive control for attitude synchronisation of spacecraft formation via extended state observer. IET Control Theor Appl, 2014, 8: 2171-2185 CrossRef Google Scholar

[32] Guo B Z, Zhao Z L. On convergence of nonlinear active disturbance rejection for SISO systems. In: Proceedings of the 24th Chinese Control and Decision Conference, 2012. 3507--3512. Google Scholar

[33] Bai W, Xue W, Huang Y. On extended state based Kalman filter design for a class of nonlinear time-varying uncertain systems. Sci China Inf Sci, 2018, 61: 042201 CrossRef Google Scholar

[34] Li B, Hu Q, Ma G. Extended State Observer based robust attitude control of spacecraft with input saturation. Aerospace Sci Tech, 2016, 50: 173-182 CrossRef Google Scholar

[35] Li B, Hu Q, Yu Y. Observer-Based Fault-Tolerant Attitude Control for Rigid Spacecraft. IEEE Trans Aerosp Electron Syst, 2017, 53: 2572-2582 CrossRef ADS Google Scholar

[36] Cai D H, Zou H G, Wang J Z, et al. S discussions on “event-triggered attitude tracking for rigid spacecraft”. 2019. www.escience.cn/people/dshi/. Google Scholar

[37] Khalil H K. Nonlinear Systems. Englewood Cliffs: Prentice Hall, 2002. Google Scholar

[38] Li P, Yue X K, Chi X B, et al. Optimal relative attitude tracking control for spacecraft proximity operation. In: Proceedings of the 25th Chinese Control and Decision Conference, 2013. Google Scholar

  • Figure 1

    Schematic of the event-triggered ADRC scheme.

  • Figure 2

    (Color online) Attitude quaternion tracking performance of sinusoidal form. Tracking performance for (a) $q_1$, (b) $q_2$, (c) $q_3$, and (d) $q_4$.

  • Figure 3

    (Color online) Angular-velocity-tracking performance of sinusoidal form.

  • Figure 6

    (Color online) Sampling intervals of ET-ADRC scheme with $\Psi=1.5$ for sinusoidal form.

  • Figure 7

    (Color online) Sampling intervals of ET-ADRC scheme with $\Psi=2.5$ for square wave form.

  • Figure 8

    (Color online) Attitude quaternion tracking performance of square wave form. Tracking performance for (a) $q_1$, (b) $q_2$, (c) $q_3$, and (d) $q_4$.

  • Figure 9

    (Color online) Angular-velocity-tracking performance of square wave form.

  • Table 1   Performances of two control schemes of sinusoidal form
    Simulation scheme Average sampling time $T_{A}$ (ms) Tracking errors $E_{v}/E_{q}$ QEC $E_c$
    Time-triggered 1 0.0115/0.0059 0.58
    400 0.0407/0.0073 3.41
    Event-triggered 101.21 ($\Psi=0.1$) 0.0122/0.0059 0.59
    402.13 ($\Psi=1.5$) 0.0268/0.0075 0.84
  • Table 2   The effect of uncertainties upon the performance of the ET-ADRC scheme with $\Psi=0.1$
    Reference Simulation scenario Average inputs signal (N*m) Tracking errors $E_{v}/E_{q}$
    Sinusoid form With uncertainties $1.49$ $0.0122/0.0059$
    Without uncertainties $1.35$ $0.0123/0.0059$
    Squarewave form With uncertainties $1.90$ $0.0158/0.0063$
    Without uncertainties $1.67$ $0.0157/0.0063$
  • Table 3   Performances of two control schemes of square wave form
    Simulation scheme Average sampling time $T_{A}$ (ms) Tracking errors $E_{v}/E_{q}$ QEC $E_c$
    Time-triggered 1 0.0152/0.0063 0.60
    400 0.0575/0.0094 3.77
    Event-triggered 60.90 ($\Psi=0.1$) 0.0158/0.0063 0.61
    401.52 ($\Psi=2.5$) 0.0402/0.0092 1.16