SCIENCE CHINA Information Sciences, Volume 63 , Issue 3 : 139102(2020) https://doi.org/10.1007/s11432-018-9818-y

Theoretical analysis of persistent fault attack

More info
  • ReceivedDec 30, 2018
  • AcceptedMar 1, 2019
  • PublishedFeb 10, 2020


There is no abstract available for this article.


This work was supported in part by Open Fund of State Key Laboratory of Cryptology (MMKFKT201805), Zhejiang Key RD Plan(2019C03133), Major Scientific Research Project of Zhejiang Lab (2018FD0ZX01), Young Elite Scientists Sponsorship Program by CAST(17-JCJQ-QT-045), Alibaba-Zhejiang University Joint Institute of Frontier Technologies.


Appendixes A–C.


[1] Zhang F, Lou X X, Zhao X J, et al. Persistent fault analysis on block ciphers. IACR Trans Cryptograph Embed Syst, 2018, 2018: 150--172. Google Scholar

[2] Joye M, Tunstall M. Fault Analysis in Cryptography. Berlin: Springer, 2012. Google Scholar

[3] Ferrante M, Saltalamacchia M. The coupon collector's problem. Mater Matemàtics, 2014, 2014: 1--35. Google Scholar

[4] Flajolet P, Gardy D, Thimonier L. Birthday paradox, coupon collectors, caching algorithms and self-organizing search. Discrete Appl Math, 1992, 39: 207-229 CrossRef Google Scholar

  • Figure 1

    (Color online) (a) Distribution of values in ciphertexts; (b) error rate and number of ciphertexts for all cases.


    Algorithm 1 Pseudo code to distinguish two special values

    Require:$n,~j,~\text{value}[i]$ $(~0~\leq~i~\leq~j)$;

    $\text{count}[n]~\Leftarrow~[0..0];$ $\text{value}_{\min}~\Leftarrow~0;$ $~\text{value}_{\max}~\Leftarrow~0$;

    for $i~\Leftarrow~0$ TO $j-1$


    end for

    for $\text{value}~\Leftarrow~0$ TO $N-1$

    if $\text{count}[\text{value}]~\leq~\text{count}[\text{value}_{\min}]$ then



    end if

    end for

    return $\text{value}_{\min},~\text{value}_{\max}$.