SCIENCE CHINA Information Sciences, Volume 62 , Issue 11 : 212202(2019) https://doi.org/10.1007/s11432-018-9782-9

Asymptotic state estimation for linear systems with sensor and actuator faults

More info
  • ReceivedOct 25, 2018
  • AcceptedJan 31, 2019
  • PublishedAug 19, 2019



This work was supported in part by National Natural Science Foundation of China (Grant Nos. 61733005, 61673172, 61663013, 61803155, 51565012) and Science and Technology Research Project of Jiangxi Education Department (Grant No. 170376).


[1] Luenberger D. Observers for multivariable systems. IEEE Trans Autom Control, 1966, 11: 190-197 CrossRef Google Scholar

[2] Zhou D, Qin L, He X. Distributed sensor fault diagnosis for a formation system with unknown constant time delays. Sci China Inf Sci, 2018, 61: 112205 CrossRef Google Scholar

[3] Kudva P, Viswanadham N, Ramakrishna A. Observers for linear systems with unknown inputs. IEEE Trans Autom Control, 1980, 25: 113-115 CrossRef Google Scholar

[4] Kalsi K, Lian J, Hui S. Sliding-mode observers for systems with unknown inputs: A high-gain approach. Automatica, 2010, 46: 347-353 CrossRef Google Scholar

[5] de Souza C E, Coutinho D, Kinnaert M. Mean square state estimation for sensor networks. Automatica, 2016, 72: 108-114 CrossRef Google Scholar

[6] Zheng G, Bejarano F J. Observer design for linear singular time-delay systems. Automatica, 2017, 80: 1-9 CrossRef Google Scholar

[7] Shi D, Chen T, Darouach M. Event-based state estimation of linear dynamic systems with unknown exogenous inputs. Automatica, 2016, 69: 275-288 CrossRef Google Scholar

[8] Park G, Shim H. Guaranteeing almost fault-free tracking performance from transient to steady-state: a disturbance observer approach. Sci China Inf Sci, 2018, 61: 070224 CrossRef Google Scholar

[9] Chong M S, Wakaiki M, Hespanha J P. Observability of linear systems under adversarial attacks. In: Processings of American Control Conference, 2015. 2439--2444. Google Scholar

[10] Edwards C, Spurgeon S K, Patton R J. Sliding mode observers for fault detection and isolation. Automatica, 2000, 36: 541-553 CrossRef Google Scholar

[11] Edwards C, Tan C P. Sensor fault tolerant control using sliding mode observers. Control Eng Practice, 2006, 14: 897-908 CrossRef Google Scholar

[12] Park T G. Estimation strategies for fault isolation of linear systems with disturbances. IET Control Theor Appl, 2010, 4: 2781-2792 CrossRef Google Scholar

[13] Alwi H, Edwards C, Tan C P. Sliding mode estimation schemes for incipient sensor faults. Automatica, 2009, 45: 1679-1685 CrossRef Google Scholar

[14] Rafaralahy H, Richard E, Boutayeb M. Sensor diagnosis and state estimation for a class of skew symmetric time-varying systems. Automatica, 2012, 48: 2284-2289 CrossRef Google Scholar

[15] Lan J, Patton R J. A new strategy for integration of fault estimation within fault-tolerant control. Automatica, 2016, 69: 48-59 CrossRef Google Scholar

[16] Wang X, Tan C P, Zhou D. A novel sliding mode observer for state and fault estimation in systems not satisfying matching and minimum phase conditions. Automatica, 2017, 79: 290-295 CrossRef Google Scholar

[17] Gao Z, Ding S X. Actuator fault robust estimation and fault-tolerant control for a class of nonlinear descriptor systems. Automatica, 2007, 43: 912-920 CrossRef Google Scholar

[18] Yang G H, Wang H. Fault Detection for a Class of Uncertain State-Feedback Control Systems. IEEE Trans Contr Syst Technol, 2010, 18: 201-212 CrossRef Google Scholar

[19] Shen Q, Jiang B, Shi P. Adaptive Fault Diagnosis for T-S Fuzzy Systems With Sensor Faults and System Performance Analysis. IEEE Trans Fuzzy Syst, 2014, 22: 274-285 CrossRef Google Scholar

[20] Li X J, Yang G H. Fault detection in finite frequency domain for Takagi-Sugeno fuzzy systems with sensor faults.. IEEE Trans Cybern, 2014, 44: 1446-1458 CrossRef PubMed Google Scholar

[21] Yang G H, Ye D. Reliable $H_{\infty}$ Control of Linear Systems With Adaptive Mechanism. IEEE Trans Autom Control, 2010, 55: 242-247 CrossRef Google Scholar

[22] Jiang B, Yang H, Shi P. Switching fault tolerant control design via global dissipativity. Int J Syst Sci, 2010, 41: 1003-1012 CrossRef Google Scholar

[23] Tong S, Huo B, Li Y. Observer-Based Adaptive Decentralized Fuzzy Fault-Tolerant Control of Nonlinear Large-Scale Systems With Actuator Failures. IEEE Trans Fuzzy Syst, 2014, 22: 1-15 CrossRef Google Scholar

[24] Liu M, Ho D W C, Shi P. Adaptive fault-tolerant compensation control for Markovian jump systems with mismatched external disturbance. Automatica, 2015, 58: 5-14 CrossRef Google Scholar

[25] Li Y X, Yang G H. Adaptive asymptotic tracking control of uncertain nonlinear systems with input quantization and actuator faults. Automatica, 2016, 72: 177-185 CrossRef Google Scholar

[26] Deng C, Yang G H. Distributed adaptive fault-tolerant control approach to cooperative output regulation for linear multi-agent systems. Automatica, 2019, 103: 62-68 CrossRef Google Scholar

[27] Hautus M L J. Strong detectability and observers. Linear Algebra its Appl, 1983, 50: 353-368 CrossRef Google Scholar

[28] Zhang W, Zhang H, Chen B S. Generalized Lyapunov Equation Approach to State-Dependent Stochastic Stabilization/Detectability Criterion. IEEE Trans Autom Control, 2008, 53: 1630-1642 CrossRef Google Scholar

[29] Corless M, Tu J. State and Input Estimation for a Class of Uncertain Systems. Automatica, 1998, 34: 757-764 CrossRef Google Scholar

[30] Filippov A F. Differential Equations with Discontinuous Right-Hand Sides. Dordrecht: KluwerAcademic Publishers, 1988. Google Scholar

[31] Slotine J J E, Li W. Applied Nonlinear Control. Englewood Cliffs: Prentice-Hall, 1991. Google Scholar

[32] Siwakosit W, Hess R A. Multi-Input/Multi-Output Reconfigurable Flight Control Design. J Guidance Control Dyn, 2001, 24: 1079-1088 CrossRef ADS Google Scholar


Contact and support