References
[1]
Snitzer
E.
Proposed Fiber Cavities for Optical Masers.
J Appl Phys,
1961, 32: 36-39
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Proposed Fiber Cavities for Optical Masers&author=Snitzer E&publication_year=1961&journal=J Appl Phys&volume=32&pages=36-39
[2]
Richardson
D J,
Nilsson
J,
Clarkson
W A.
High power fiber lasers: current status and future perspectives [Invited].
J Opt Soc Am B,
2010, 27: 63-92
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=High power fiber lasers: current status and future perspectives [Invited]&author=Richardson D J&author=Nilsson J&author=Clarkson W A&publication_year=2010&journal=J Opt Soc Am B&volume=27&pages=63-92
[3]
Dong L, Samson B. Fiber Lasers: Basics, Technology, and Applications. Boca Raton: CRC Press, 2016.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dong L, Samson B. Fiber Lasers: Basics, Technology, and Applications. Boca Raton: CRC Press, 2016&
[4]
Zervas
M N,
Codemard
C A.
High Power Fiber Lasers: A Review.
IEEE J Sel Top Quantum Electron,
2014, 20: 219-241
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=High Power Fiber Lasers: A Review&author=Zervas M N&author=Codemard C A&publication_year=2014&journal=IEEE J Sel Top Quantum Electron&volume=20&pages=219-241
[5]
Liu Z, Zhou P, Xu X, et al. Coherent Beam Combining of High Average Power Fiber Lasers. Beijing: National Defense Industry Press, 2016.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Liu Z, Zhou P, Xu X, et al. Coherent Beam Combining of High Average Power Fiber Lasers. Beijing: National Defense Industry Press, 2016&
[6]
Stiles E. New developments in IPG fiber laser technology. In: Proceedings of the 5th International Workshop on Fiber Lasers, 2009.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stiles E. New developments in IPG fiber laser technology. In: Proceedings of the 5th International Workshop on Fiber Lasers, 2009&
[7]
Shi
W,
Fang
Q,
Zhu
X.
Fiber lasers and their applications [Invited].
Appl Opt,
2014, 53: 6554-6568
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fiber lasers and their applications [Invited]&author=Shi W&author=Fang Q&author=Zhu X&publication_year=2014&journal=Appl Opt&volume=53&pages=6554-6568
[8]
Huang
L,
Xu
J,
Ye
J.
Power Scaling of Linearly Polarized Random Fiber Laser.
IEEE J Sel Top Quantum Electron,
2018, 24: 1-8
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Power Scaling of Linearly Polarized Random Fiber Laser&author=Huang L&author=Xu J&author=Ye J&publication_year=2018&journal=IEEE J Sel Top Quantum Electron&volume=24&pages=1-8
[9]
Shi W, Schulzgen A, Amezcua R, et al. Fiber lasers and their applications: introduction. J Opt Soc Am B, 2017, 34: A1.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shi W, Schulzgen A, Amezcua R, et al. Fiber lasers and their applications: introduction. J Opt Soc Am B, 2017, 34: A1&
[10]
Zhou J, Wang P, Zhou P. High power fiber laser technology: Introduction. Chin J Laser, 2017, 44: 201000.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhou J, Wang P, Zhou P. High power fiber laser technology: Introduction. Chin J Laser, 2017, 44: 201000&
[11]
Dawson
J W,
Messerly
M J,
Beach
R J.
Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power.
Opt Express,
2008, 16: 13240-13266
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power&author=Dawson J W&author=Messerly M J&author=Beach R J&publication_year=2008&journal=Opt Express&volume=16&pages=13240-13266
[12]
Zhu
J,
Zhou
P,
Ma
Y.
Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers.
Opt Express,
2011, 19: 18645-18654
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers&author=Zhu J&author=Zhou P&author=Ma Y&publication_year=2011&journal=Opt Express&volume=19&pages=18645-18654
[13]
Ke
W W,
Wang
X J,
Bao
X F.
Thermally induced mode distortion and its limit to power scaling of fiber lasers.
Opt Express,
2013, 21: 14272-14281
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Thermally induced mode distortion and its limit to power scaling of fiber lasers&author=Ke W W&author=Wang X J&author=Bao X F&publication_year=2013&journal=Opt Express&volume=21&pages=14272-14281
[14]
Otto H J, Jauregui C, Limpert J, et al. Average power limit of Ytterbium-doped fiber-laser systems with nearly diffraction-limited beam quality. In: Proceedings of SPIE, San Francisco, 2015. 97280E.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Otto H J, Jauregui C, Limpert J, et al. Average power limit of Ytterbium-doped fiber-laser systems with nearly diffraction-limited beam quality. In: Proceedings of SPIE, San Francisco, 2015. 97280E&
[15]
Zervas M N. Power scaling limits in high power fiber amplifiers due to transverse mode instability, thermal lensing, and fiber mechanical reliability. In: Proceedings of SPIE, San Francisco, 2018. 1051205.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zervas M N. Power scaling limits in high power fiber amplifiers due to transverse mode instability, thermal lensing, and fiber mechanical reliability. In: Proceedings of SPIE, San Francisco, 2018. 1051205&
[16]
Shcherbakov E, Fomin V, Abramov A, et al. Industrial grade 100 kW power CW fiber laser. In: Advanced Solid State Lasers. Optical Society of America, 2013. ATh4A.2.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shcherbakov E, Fomin V, Abramov A, et al. Industrial grade 100 kW power CW fiber laser. In: Advanced Solid State Lasers. Optical Society of America, 2013. ATh4A.2&
[17]
Fan
T Y.
Laser beam combining for high-power, high-radiance sources.
IEEE J Sel Top Quantum Electron,
2005, 11: 567-577
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Laser beam combining for high-power, high-radiance sources&author=Fan T Y&publication_year=2005&journal=IEEE J Sel Top Quantum Electron&volume=11&pages=567-577
[18]
Brignon A. Coherent Laser Beam Combining. Weinheim: John Wiley $\&$ Sons, 2013.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Brignon A. Coherent Laser Beam Combining. Weinheim: John Wiley $\&$ Sons, 2013&
[19]
Liu
Z J,
Zhou
P,
Xu
X J.
Coherent beam combining of high power fiber lasers: Progress and prospect.
Sci China Technol Sci,
2013, 56: 1597-1606
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Coherent beam combining of high power fiber lasers: Progress and prospect&author=Liu Z J&author=Zhou P&author=Xu X J&publication_year=2013&journal=Sci China Technol Sci&volume=56&pages=1597-1606
[20]
Honea E, Afzal R S, Savage-Leuchs M, et al. Advances in fiber laser spectral beam combining for power scaling. In: Proceedings of SPIE, San Francisco, 2016. 97300Y.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Honea E, Afzal R S, Savage-Leuchs M, et al. Advances in fiber laser spectral beam combining for power scaling. In: Proceedings of SPIE, San Francisco, 2016. 97300Y&
[21]
Ma
Y,
Wang
X,
Zhou
P.
Coherent beam combination of 137 W fiber amplifier array using single frequency dithering technique.
Opt Lasers Eng,
2011, 49: 1089-1092
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Coherent beam combination of 137 W fiber amplifier array using single frequency dithering technique&author=Ma Y&author=Wang X&author=Zhou P&publication_year=2011&journal=Opt Lasers Eng&volume=49&pages=1089-1092
[22]
Su
R,
Zhou
P,
Wang
X.
Active coherent beam combining of a five-element, 800 W nanosecond fiber amplifier array.
Opt Lett,
2012, 37: 3978-3980
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Active coherent beam combining of a five-element, 800 W nanosecond fiber amplifier array&author=Su R&author=Zhou P&author=Wang X&publication_year=2012&journal=Opt Lett&volume=37&pages=3978-3980
[23]
Liu
Z,
Ma
P,
Su
R.
High-power coherent beam polarization combination of fiber lasers: progress and prospect [Invited].
J Opt Soc Am B,
2017, 34: A7
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-power coherent beam polarization combination of fiber lasers: progress and prospect [Invited]&author=Liu Z&author=Ma P&author=Su R&publication_year=2017&journal=J Opt Soc Am B&volume=34&pages=A7
[24]
Zhou P, Wang X, Ma Y, et al. Active and passive coherent beam combining of thulium-doped fiber lasers. In: Proceedings of SPIE, San Francisco, 2010. 784307.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhou P, Wang X, Ma Y, et al. Active and passive coherent beam combining of thulium-doped fiber lasers. In: Proceedings of SPIE, San Francisco, 2010. 784307&
[25]
Ma
P,
Tao
R,
Su
R.
189 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality.
Opt Express,
2016, 24: 4187-4195
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=189 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality&author=Ma P&author=Tao R&author=Su R&publication_year=2016&journal=Opt Express&volume=24&pages=4187-4195
[26]
Yu
H,
Wang
X,
Zhang
H.
Linearly-polarized fiber-integrated nonlinear CPA system for high-average-power femtosecond pulses generation at 1.06 $\mu$m.
J Lightwave Technol,
2016, 34: 4271-4277
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Linearly-polarized fiber-integrated nonlinear CPA system for high-average-power femtosecond pulses generation at 1.06 $\mu$m&author=Yu H&author=Wang X&author=Zhang H&publication_year=2016&journal=J Lightwave Technol&volume=34&pages=4271-4277
[27]
Jin X, Wang X, Zhou P, et al. Powerful 2 $\mu$m silica fiber sources: A review of recent progress and prospects. Journal of Electronic Science and Technology, 2015, 13: 315-327 doi: 10.11989/JEST.1674-862X.508063.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Jin X, Wang X, Zhou P, et al. Powerful 2 $\mu$m silica fiber sources: A review of recent progress and prospects. Journal of Electronic Science and Technology, 2015, 13: 315-327 doi: 10.11989/JEST.1674-862X.508063&
[28]
Huang
L,
Wu
H,
Li
R.
414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier.
Opt Lett,
2017, 42: 1-4
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier&author=Huang L&author=Wu H&author=Li R&publication_year=2017&journal=Opt Lett&volume=42&pages=1-4
[29]
Du
X,
Zhang
H,
Xiao
H.
High-power random distributed feedback fiber laser: From science to application.
ANNALEN DER PHYSIK,
2016, 528: 649-662
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-power random distributed feedback fiber laser: From science to application&author=Du X&author=Zhang H&author=Xiao H&publication_year=2016&journal=ANNALEN DER PHYSIK&volume=528&pages=649-662
[30]
Xu
J,
Zhou
P,
Liu
W.
Exploration in Performance Scaling and New Application Avenues of Superfluorescent Fiber Source.
IEEE J Sel Top Quantum Electron,
2018, 24: 1-10
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Exploration in Performance Scaling and New Application Avenues of Superfluorescent Fiber Source&author=Xu J&author=Zhou P&author=Liu W&publication_year=2018&journal=IEEE J Sel Top Quantum Electron&volume=24&pages=1-10
[31]
Xiao
H,
Zhou
P,
Wang
X.
Experimental Investigation on 1018-nm High-Power Ytterbium-Doped Fiber Amplifier.
IEEE Photon Technol Lett,
2012, 24: 1088-1090
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Experimental Investigation on 1018-nm High-Power Ytterbium-Doped Fiber Amplifier&author=Xiao H&author=Zhou P&author=Wang X&publication_year=2012&journal=IEEE Photon Technol Lett&volume=24&pages=1088-1090
[32]
Xiao
H,
Zhou
P,
Wang
X L.
High power 1018 nm ytterbium doped fiber laser with an output power of 309 W.
Laser Phys Lett,
2013, 10: 065102
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=High power 1018 nm ytterbium doped fiber laser with an output power of 309 W&author=Xiao H&author=Zhou P&author=Wang X L&publication_year=2013&journal=Laser Phys Lett&volume=10&pages=065102
[33]
Xiao
H,
Leng
J,
Zhang
H.
High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump.
Appl Opt,
2015, 54: 8166
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump&author=Xiao H&author=Leng J&author=Zhang H&publication_year=2015&journal=Appl Opt&volume=54&pages=8166
[34]
Yan
P,
Wang
X,
Li
D.
High-power 1018 nm ytterbium-doped fiber laser with output of 805 W.
Opt Lett,
2017, 42: 1193
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-power 1018 nm ytterbium-doped fiber laser with output of 805 W&author=Yan P&author=Wang X&author=Li D&publication_year=2017&journal=Opt Lett&volume=42&pages=1193
[35]
Glick Y, Sintov Y, Zuitlin R, et al. Single-mode 230 W output power 1018 nm fiber laser and ASE competition suppression. J Opt Soc Am B, 2016, 33: 1392-1398.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Glick Y, Sintov Y, Zuitlin R, et al. Single-mode 230 W output power 1018 nm fiber laser and ASE competition suppression. J Opt Soc Am B, 2016, 33: 1392-1398&
[36]
Yang
H,
Zhao
W,
Si
J.
126 W fiber laser at 1018 nm and its application in tandem pumped fiber amplifier.
J Opt,
2016, 18: 125801
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=126 W fiber laser at 1018 nm and its application in tandem pumped fiber amplifier&author=Yang H&author=Zhao W&author=Si J&publication_year=2016&journal=J Opt&volume=18&pages=125801
[37]
Gu
G,
Liu
Z,
Kong
F.
Highly efficient ytterbium-doped phosphosilicate fiber lasers operating below 1020nm.
Opt Express,
2015, 23: 17693
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Highly efficient ytterbium-doped phosphosilicate fiber lasers operating below 1020nm&author=Gu G&author=Liu Z&author=Kong F&publication_year=2015&journal=Opt Express&volume=23&pages=17693
[38]
Seah C P, Ng T Y, Chua S. 400 W Ytterbium-doped fiber oscillator at 1018nm. In: Advanced Solid State Lasers. Optical Society of America, 2015. ATu2A.33.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Seah C P, Ng T Y, Chua S. 400 W Ytterbium-doped fiber oscillator at 1018nm. In: Advanced Solid State Lasers. Optical Society of America, 2015. ATu2A.33&
[39]
Chen
X,
Wang
J,
Zhao
X.
307 W high-power 1018 nm monolithic tandem pump fiber source with effective thermal management.
Chin Opt Lett,
2017, 15: 071407
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=307 W high-power 1018 nm monolithic tandem pump fiber source with effective thermal management&author=Chen X&author=Wang J&author=Zhao X&publication_year=2017&journal=Chin Opt Lett&volume=15&pages=071407
[40]
Zhang
H,
Xiao
H,
Zhou
P.
A high-power all-fiberized Yb-doped laser directly pumped by a laser diode emitting at long wavelength.
Laser Phys Lett,
2013, 10: 095106
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A high-power all-fiberized Yb-doped laser directly pumped by a laser diode emitting at long wavelength&author=Zhang H&author=Xiao H&author=Zhou P&publication_year=2013&journal=Laser Phys Lett&volume=10&pages=095106
[41]
Huang
L,
Zhang
H,
Wang
X.
Diode-Pumped 1178-nm High-Power Yb-Doped Fiber Laser Operating at 125 C.
IEEE Photonic J,
2016, 8: 1-7
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Diode-Pumped 1178-nm High-Power Yb-Doped Fiber Laser Operating at 125 C&author=Huang L&author=Zhang H&author=Wang X&publication_year=2016&journal=IEEE Photonic J&volume=8&pages=1-7
[42]
Kurkov
A S.
Oscillation spectral range of Yb-doped fiber lasers.
Laser Phys Lett,
2007, 4: 93-102
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Oscillation spectral range of Yb-doped fiber lasers&author=Kurkov A S&publication_year=2007&journal=Laser Phys Lett&volume=4&pages=93-102
[43]
Zhou
P,
Wang
X,
Xiao
H.
Review on recent progress on Yb-doped fiber laser in a variety of oscillation spectral ranges.
Laser Phys,
2012, 22: 823-831
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Review on recent progress on Yb-doped fiber laser in a variety of oscillation spectral ranges&author=Zhou P&author=Wang X&author=Xiao H&publication_year=2012&journal=Laser Phys&volume=22&pages=823-831
[44]
Pask
H M,
Carman
R J,
Hanna
D C.
Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region.
IEEE J Sel Top Quantum Electron,
1995, 1: 2-13
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region&author=Pask H M&author=Carman R J&author=Hanna D C&publication_year=1995&journal=IEEE J Sel Top Quantum Electron&volume=1&pages=2-13
[45]
Zhang
H W,
Xiao
H,
Zhou
P.
119-W Monolithic Single-Mode 1173-nm Raman Fiber Laser.
IEEE Photonic J,
2013, 5: 1501706-1501706
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=119-W Monolithic Single-Mode 1173-nm Raman Fiber Laser&author=Zhang H W&author=Xiao H&author=Zhou P&publication_year=2013&journal=IEEE Photonic J&volume=5&pages=1501706-1501706
[46]
Zhang
H,
Zhou
P,
Xiao
H.
Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power.
Laser Phys Lett,
2014, 11: 075104
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power&author=Zhang H&author=Zhou P&author=Xiao H&publication_year=2014&journal=Laser Phys Lett&volume=11&pages=075104
[47]
Du
X,
Zhang
H,
Wang
X.
Short cavity-length random fiber laser with record power and ultrahigh efficiency.
Opt Lett,
2016, 41: 571-574
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Short cavity-length random fiber laser with record power and ultrahigh efficiency&author=Du X&author=Zhang H&author=Wang X&publication_year=2016&journal=Opt Lett&volume=41&pages=571-574
[48]
Xiao
H,
Zhang
H,
Xu
J.
120 W monolithic Yb-doped fiber oscillator at 1150 nm.
J Opt Soc Am B,
2017, 34: A63
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=120 W monolithic Yb-doped fiber oscillator at 1150 nm&author=Xiao H&author=Zhang H&author=Xu J&publication_year=2017&journal=J Opt Soc Am B&volume=34&pages=A63
[49]
Zhang
H,
Zhou
P,
Wang
X.
Hundred-watt-level high power random distributed feedback Raman fiber laser at 1150 nm and its application in mid-infrared laser generation.
Opt Express,
2015, 23: 17138-17144
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hundred-watt-level high power random distributed feedback Raman fiber laser at 1150 nm and its application in mid-infrared laser generation&author=Zhang H&author=Zhou P&author=Wang X&publication_year=2015&journal=Opt Express&volume=23&pages=17138-17144
[50]
Jin X, Lou Z, Chen Y, et al. High-power dual-wavelength Ho-doped fiber laser at &.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Jin X, Lou Z, Chen Y, et al. High-power dual-wavelength Ho-doped fiber laser at &&
[51]
Chen
Y,
Xiao
H,
Xu
J.
Laser diode-pumped dual-cavity high-power fiber laser emitting at 1150 nm employing hybrid gain.
Appl Opt,
2016, 55: 3824-3828
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Laser diode-pumped dual-cavity high-power fiber laser emitting at 1150 nm employing hybrid gain&author=Chen Y&author=Xiao H&author=Xu J&publication_year=2016&journal=Appl Opt&volume=55&pages=3824-3828
[52]
Wang
J,
Li
C,
Yan
D.
High power composite cavity fiber laser oscillator at 1120 nm.
Optics Commun,
2017, 405: 318-322
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=High power composite cavity fiber laser oscillator at 1120 nm&author=Wang J&author=Li C&author=Yan D&publication_year=2017&journal=Optics Commun&volume=405&pages=318-322
[53]
Gu
Y,
Lei
C,
Liu
J.
Side-pumping combiner for high-power fiber laser based on tandem pumping.
Opt Eng,
2017, 56: 1
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Side-pumping combiner for high-power fiber laser based on tandem pumping&author=Gu Y&author=Lei C&author=Liu J&publication_year=2017&journal=Opt Eng&volume=56&pages=1
[54]
Xiao
Q,
Yan
P,
Ren
H.
A Side-Pump Coupler With Refractive Index Valley Configuration for Fiber Lasers and Amplifiers.
J Lightwave Technol,
2013, 31: 2715-2722
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Side-Pump Coupler With Refractive Index Valley Configuration for Fiber Lasers and Amplifiers&author=Xiao Q&author=Yan P&author=Ren H&publication_year=2013&journal=J Lightwave Technol&volume=31&pages=2715-2722
[55]
Lei
C,
Chen
Z,
Leng
J.
The Influence of Fused Depth on the Side-Pumping Combiner for All-Fiber Lasers and Amplifiers.
J Lightwave Technol,
2017, 35: 1922-1928
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=The Influence of Fused Depth on the Side-Pumping Combiner for All-Fiber Lasers and Amplifiers&author=Lei C&author=Chen Z&author=Leng J&publication_year=2017&journal=J Lightwave Technol&volume=35&pages=1922-1928
[56]
Guo W, Chen Z, Li J, et al. A system for splicing double cladding fiber and glass cone and its splicing method. China Patent, CN103217741A, 2014-09-17.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Guo W, Chen Z, Li J, et al. A system for splicing double cladding fiber and glass cone and its splicing method. China Patent, CN103217741A, 2014-09-17&
[57]
Zhou X F, Chen Z L, Hou J, et al. High power fiber end-cap with 6 kW output power. High Power Laser and Particle Beams, 2015. 1--2 DOI: 10.11884/HPLPB201527.120101.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhou X F, Chen Z L, Hou J, et al. High power fiber end-cap with 6 kW output power. High Power Laser and Particle Beams, 2015. 1--2 DOI: 10.11884/HPLPB201527.120101&
[58]
Lei
C,
Gu
Y,
Chen
Z.
Incoherent beam combining of fiber lasers by an all-fiber 7 1 signal combiner at a power level of 14 kW..
Opt Express,
2018, 26: 10421-10427
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Incoherent beam combining of fiber lasers by an all-fiber 7 1 signal combiner at a power level of 14 kW.&author=Lei C&author=Gu Y&author=Chen Z&publication_year=2018&journal=Opt Express&volume=26&pages=10421-10427
[59]
Zhou
X,
Chen
Z,
Wang
Z.
Monolithic fiber end cap collimator for high-power free-space fiber-fiber coupling.
Appl Opt,
2016, 55: 4001-4004
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Monolithic fiber end cap collimator for high-power free-space fiber-fiber coupling&author=Zhou X&author=Chen Z&author=Wang Z&publication_year=2016&journal=Appl Opt&volume=55&pages=4001-4004
[60]
Zhi
D,
Ma
Y,
Chen
Z.
Large deflection angle, high-power adaptive fiber optics collimator with preserved near-diffraction-limited beam quality.
Opt Lett,
2016, 41: 2217-2220
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Large deflection angle, high-power adaptive fiber optics collimator with preserved near-diffraction-limited beam quality&author=Zhi D&author=Ma Y&author=Chen Z&publication_year=2016&journal=Opt Lett&volume=41&pages=2217-2220
[61]
Zhi
D,
Zhang
Z,
Ma
Y.
Realization of large energy proportion in the central lobe by coherent beam combination based on conformal projection system.
Sci Rep,
2017, 7: 2199
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Realization of large energy proportion in the central lobe by coherent beam combination based on conformal projection system&author=Zhi D&author=Zhang Z&author=Ma Y&publication_year=2017&journal=Sci Rep&volume=7&pages=2199
[62]
Guo W, Chen Z, Zhou H, et al. Cascaded cladding light extracting strippers for high power fiber lasers and amplifiers. IEEE Photonic J, 2014, 6: 1-6.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Guo W, Chen Z, Zhou H, et al. Cascaded cladding light extracting strippers for high power fiber lasers and amplifiers. IEEE Photonic J, 2014, 6: 1-6&
[63]
Zhou
H,
Chen
Z,
Zhou
X.
All-fiber 7$\times$1 signal combiner with high beam quality for high-power fiber lasers.
Chin Opt Lett,
2015, 13: 061406-61409
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=All-fiber 7$\times$1 signal combiner with high beam quality for high-power fiber lasers&author=Zhou H&author=Chen Z&author=Zhou X&publication_year=2015&journal=Chin Opt Lett&volume=13&pages=061406-61409
[64]
Li
R,
Xiao
H,
Leng
J.
2240 W high-brightness 1018?nm fiber laser for tandem pump application.
Laser Phys Lett,
2017, 14: 125102
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=2240 W high-brightness 1018?nm fiber laser for tandem pump application&author=Li R&author=Xiao H&author=Leng J&publication_year=2017&journal=Laser Phys Lett&volume=14&pages=125102
[65]
Gu Y, Leng J, Xiao H, et al. 5 kW all-fiber 1018 nm laser combining. High Power Laser Particle Beams, 2017, 29: 29120101.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gu Y, Leng J, Xiao H, et al. 5 kW all-fiber 1018 nm laser combining. High Power Laser Particle Beams, 2017, 29: 29120101&
[66]
Agrawal G. Nonlinear Fiber Optics. Manhattan: Academic Press, 2012.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Agrawal G. Nonlinear Fiber Optics. Manhattan: Academic Press, 2012&
[67]
Lü
H,
Zhou
P,
Wang
X.
Dynamics of stimulated Brillouin scattering in optical fibers without external feedback induced by frequency detuning from resonance.
Opt Express,
2015, 23: 18117-18132
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dynamics of stimulated Brillouin scattering in optical fibers without external feedback induced by frequency detuning from resonance&author=Lü H&author=Zhou P&author=Wang X&publication_year=2015&journal=Opt Express&volume=23&pages=18117-18132
[68]
Lu
H,
Zhou
P,
Wang
X.
Theoretical and Numerical Study of the Threshold of Stimulated Brillouin Scattering in Multimode fibers.
J Lightwave Technol,
2015, 33: 4464-4470
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Theoretical and Numerical Study of the Threshold of Stimulated Brillouin Scattering in Multimode fibers&author=Lu H&author=Zhou P&author=Wang X&publication_year=2015&journal=J Lightwave Technol&volume=33&pages=4464-4470
[69]
Leng
J Y,
Wang
X L,
Xiao
H.
Suppressing the stimulated Brillouin scattering in high power fiber amplifiers by dual-single-frequency amplification Suppressing the stimulated Brillouin scattering.
Laser Phys Lett,
2012, 9: 532-536
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Suppressing the stimulated Brillouin scattering in high power fiber amplifiers by dual-single-frequency amplification Suppressing the stimulated Brillouin scattering&author=Leng J Y&author=Wang X L&author=Xiao H&publication_year=2012&journal=Laser Phys Lett&volume=9&pages=532-536
[70]
Huang
L,
Li
L,
Ma
P.
434 W all-fiber linear-polarization dual-frequency Yb-doped fiber laser carrying low-noise radio frequency signal.
Opt Express,
2016, 24: 26722-26731
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=434 W all-fiber linear-polarization dual-frequency Yb-doped fiber laser carrying low-noise radio frequency signal&author=Huang L&author=Li L&author=Ma P&publication_year=2016&journal=Opt Express&volume=24&pages=26722-26731
[71]
Ma
P,
Zhou
P,
Ma
Y.
Single-frequency 332 W, linearly polarized Yb-doped all-fiber amplifier with near diffraction-limited beam quality.
Appl Opt,
2013, 52: 4854
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Single-frequency 332 W, linearly polarized Yb-doped all-fiber amplifier with near diffraction-limited beam quality&author=Ma P&author=Zhou P&author=Ma Y&publication_year=2013&journal=Appl Opt&volume=52&pages=4854
[72]
Huang
L,
Zhou
Z C,
Shi
C.
Towards tapered-fiber-based all-fiberized high power narrow linewidth fiber laser.
Sci China Technol Sci,
2018, 61: 971-981
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Towards tapered-fiber-based all-fiberized high power narrow linewidth fiber laser&author=Huang L&author=Zhou Z C&author=Shi C&publication_year=2018&journal=Sci China Technol Sci&volume=61&pages=971-981
[73]
Su
R,
Tao
R,
Wang
X.
2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression.
Laser Phys Lett,
2017, 14: 085102
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression&author=Su R&author=Tao R&author=Wang X&publication_year=2017&journal=Laser Phys Lett&volume=14&pages=085102
[74]
Smith
R G.
Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering.
Appl Opt,
1972, 11: 2489
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering&author=Smith R G&publication_year=1972&journal=Appl Opt&volume=11&pages=2489
[75]
Wang
Y,
Xu
C Q,
Po
H.
Analysis of Raman and thermal effects in kilowatt fiber lasers.
Optics Commun,
2004, 242: 487-502
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Analysis of Raman and thermal effects in kilowatt fiber lasers&author=Wang Y&author=Xu C Q&author=Po H&publication_year=2004&journal=Optics Commun&volume=242&pages=487-502
[76]
Jauregui
C,
Limpert
J,
Tünnermann
A.
Derivation of Raman treshold formulas for CW double-clad fiber amplifiers.
Opt Express,
2009, 17: 8476-8490
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Derivation of Raman treshold formulas for CW double-clad fiber amplifiers&author=Jauregui C&author=Limpert J&author=Tünnermann A&publication_year=2009&journal=Opt Express&volume=17&pages=8476-8490
[77]
Liu
W,
Ma
P,
Lv
H.
General analysis of SRS-limited high-power fiber lasers and design strategy.
Opt Express,
2016, 24: 26715-26721
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=General analysis of SRS-limited high-power fiber lasers and design strategy&author=Liu W&author=Ma P&author=Lv H&publication_year=2016&journal=Opt Express&volume=24&pages=26715-26721
[78]
Liu
W,
Ma
P,
Lv
H.
Investigation of stimulated Raman scattering effect in high-power fiber amplifiers seeded by narrow-band filtered superfluorescent source.
Opt Express,
2016, 24: 8708-8717
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Investigation of stimulated Raman scattering effect in high-power fiber amplifiers seeded by narrow-band filtered superfluorescent source&author=Liu W&author=Ma P&author=Lv H&publication_year=2016&journal=Opt Express&volume=24&pages=8708-8717
[79]
Liu
W,
Ma
P,
Miao
Y.
Intrinsic Mechanism for Spectral Evolution in Single-Frequency Raman Fiber Amplifier.
IEEE J Sel Top Quantum Electron,
2018, 24: 1-8
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Intrinsic Mechanism for Spectral Evolution in Single-Frequency Raman Fiber Amplifier&author=Liu W&author=Ma P&author=Miao Y&publication_year=2018&journal=IEEE J Sel Top Quantum Electron&volume=24&pages=1-8
[80]
Zhang
L,
Jiang
H,
Cui
S.
Integrated ytterbium-Raman fiber amplifier.
Opt Lett,
2014, 39: 1933-1936
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Integrated ytterbium-Raman fiber amplifier&author=Zhang L&author=Jiang H&author=Cui S&publication_year=2014&journal=Opt Lett&volume=39&pages=1933-1936
[81]
Zhang
H,
Xiao
H,
Zhou
P.
High power Yb-Raman combined nonlinear fiber amplifier.
Opt Express,
2014, 22: 10248-10255
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=High power Yb-Raman combined nonlinear fiber amplifier&author=Zhang H&author=Xiao H&author=Zhou P&publication_year=2014&journal=Opt Express&volume=22&pages=10248-10255
[82]
Zhang
H,
Tao
R,
Zhou
P.
1.5-kW Yb-Raman Combined Nonlinear Fiber Amplifier at 1120 nm.
IEEE Photon Technol Lett,
2015, 27: 628-630
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=1.5-kW Yb-Raman Combined Nonlinear Fiber Amplifier at 1120 nm&author=Zhang H&author=Tao R&author=Zhou P&publication_year=2015&journal=IEEE Photon Technol Lett&volume=27&pages=628-630
[83]
Xiao
Q,
Yan
P,
Li
D.
Bidirectional pumped high power Raman fiber laser.
Opt Express,
2016, 24: 6758-6768
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bidirectional pumped high power Raman fiber laser&author=Xiao Q&author=Yan P&author=Li D&publication_year=2016&journal=Opt Express&volume=24&pages=6758-6768
[84]
Smith
A V,
Smith
J J.
Influence of pump and seed modulation on the mode instability thresholds of fiber amplifiers.
Opt Express,
2012, 20: 24545-24558
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Influence of pump and seed modulation on the mode instability thresholds of fiber amplifiers&author=Smith A V&author=Smith J J&publication_year=2012&journal=Opt Express&volume=20&pages=24545-24558
[85]
Smith
A V,
Smith
J J.
Mode instability in high power fiber amplifiers.
Opt Express,
2011, 19: 10180-10192
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mode instability in high power fiber amplifiers&author=Smith A V&author=Smith J J&publication_year=2011&journal=Opt Express&volume=19&pages=10180-10192
[86]
Eidam
T,
Wirth
C,
Jauregui
C.
Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers.
Opt Express,
2011, 19: 13218-13224
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers&author=Eidam T&author=Wirth C&author=Jauregui C&publication_year=2011&journal=Opt Express&volume=19&pages=13218-13224
[87]
Jauregui
C,
Eidam
T,
Otto
H J.
Physical origin of mode instabilities in high-power fiber laser systems.
Opt Express,
2012, 20: 12912-12925
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Physical origin of mode instabilities in high-power fiber laser systems&author=Jauregui C&author=Eidam T&author=Otto H J&publication_year=2012&journal=Opt Express&volume=20&pages=12912-12925
[88]
Ward
B,
Robin
C,
Dajani
I.
Origin of thermal modal instabilities in large mode area fiber amplifiers.
Opt Express,
2012, 20: 11407-11422
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Origin of thermal modal instabilities in large mode area fiber amplifiers&author=Ward B&author=Robin C&author=Dajani I&publication_year=2012&journal=Opt Express&volume=20&pages=11407-11422
[89]
Hu I, Zhu C, Zhang C, et al. Analytical time-dependent theory of thermally induced modal instabilities in high power fiber amplifiers. In: Proceedings of SPIE, San Francisco, 2013. 860109.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hu I, Zhu C, Zhang C, et al. Analytical time-dependent theory of thermally induced modal instabilities in high power fiber amplifiers. In: Proceedings of SPIE, San Francisco, 2013. 860109&
[90]
Hansen
K R,
Alkeskjold
T T,
Broeng
J.
Theoretical analysis of mode instability in high-power fiber amplifiers.
Opt Express,
2013, 21: 1944
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Theoretical analysis of mode instability in high-power fiber amplifiers&author=Hansen K R&author=Alkeskjold T T&author=Broeng J&publication_year=2013&journal=Opt Express&volume=21&pages=1944
[91]
Rumao Tao
,
Pengfei Ma
,
Xiaolin Wang
.
Study of Wavelength Dependence of Mode Instability Based on a Semi-Analytical Model.
IEEE J Quantum Electron,
2015, 51: 1-6
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Study of Wavelength Dependence of Mode Instability Based on a Semi-Analytical Model&author=Rumao Tao &author=Pengfei Ma &author=Xiaolin Wang &publication_year=2015&journal=IEEE J Quantum Electron&volume=51&pages=1-6
[92]
Tao
R,
Ma
P,
Wang
X.
Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers.
Laser Phys Lett,
2015, 12: 085101
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers&author=Tao R&author=Ma P&author=Wang X&publication_year=2015&journal=Laser Phys Lett&volume=12&pages=085101
[93]
Tao
R,
Wang
X,
Zhou
P.
Comprehensive Theoretical Study of Mode Instability in High-Power Fiber Lasers by Employing a Universal Model and Its Implications.
IEEE J Sel Top Quantum Electron,
2018, 24: 1-19
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Comprehensive Theoretical Study of Mode Instability in High-Power Fiber Lasers by Employing a Universal Model and Its Implications&author=Tao R&author=Wang X&author=Zhou P&publication_year=2018&journal=IEEE J Sel Top Quantum Electron&volume=24&pages=1-19
[94]
Tao
R,
Ma
P,
Wang
X.
13??kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities.
Photon Res,
2015, 3: 86-93
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=13??kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities&author=Tao R&author=Ma P&author=Wang X&publication_year=2015&journal=Photon Res&volume=3&pages=86-93
[95]
Tao
R,
Ma
P,
Wang
X.
Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength.
J Opt,
2015, 17: 045504
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength&author=Tao R&author=Ma P&author=Wang X&publication_year=2015&journal=J Opt&volume=17&pages=045504
[96]
Dajani I, Flores A, Holten R, et al. Multi-kilowatt power scaling and coherent beam combining of narrow-linewidth fiber lasers. In: Proceedings of SPIE, San Francisco, 2016. 972801.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dajani I, Flores A, Holten R, et al. Multi-kilowatt power scaling and coherent beam combining of narrow-linewidth fiber lasers. In: Proceedings of SPIE, San Francisco, 2016. 972801&
[97]
Wirth
C,
Schmidt
O,
Tsybin
I.
High average power spectral beam combining of four fiber amplifiers to 8.2?kW.
Opt Lett,
2011, 36: 3118-3120
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=High average power spectral beam combining of four fiber amplifiers to 8.2?kW&author=Wirth C&author=Schmidt O&author=Tsybin I&publication_year=2011&journal=Opt Lett&volume=36&pages=3118-3120
[98]
Zheng
Y,
Yang
Y,
Wang
J.
108 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation.
Opt Express,
2016, 24: 12063-12071
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=108 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation&author=Zheng Y&author=Yang Y&author=Wang J&publication_year=2016&journal=Opt Express&volume=24&pages=12063-12071
[99]
Karow
M,
Basu
C,
Kracht
D.
TEM 00 mode content of a two stage single-frequency Yb-doped PCF MOPA with 246 W of output power..
Opt Express,
2012, 20: 5319-5324
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=TEM 00 mode content of a two stage single-frequency Yb-doped PCF MOPA with 246 W of output power.&author=Karow M&author=Basu C&author=Kracht D&publication_year=2012&journal=Opt Express&volume=20&pages=5319-5324
[100]
Gapontsev V, Avdokhin A, Kadwani P, et al. SM green fiber laser operating in CW and QCW regimes and producing over 550W of average output power. In: Proceedings of SPIE, San Francisco, 2014. 896407.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gapontsev V, Avdokhin A, Kadwani P, et al. SM green fiber laser operating in CW and QCW regimes and producing over 550W of average output power. In: Proceedings of SPIE, San Francisco, 2014. 896407&
[101]
Zhou
P,
Huang
L,
Xu
J M.
High power linearly polarized fiber laser: Generation, manipulation and application.
Sci China Technol Sci,
2017, 60: 1784-1800
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High power linearly polarized fiber laser: Generation, manipulation and application&author=Zhou P&author=Huang L&author=Xu J M&publication_year=2017&journal=Sci China Technol Sci&volume=60&pages=1784-1800
[102]
Ruffin
A B,
Li
M J,
Chen
X.
Brillouin gain analysis for fibers with different refractive indices.
Opt Lett,
2005, 30: 3123-3125
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Brillouin gain analysis for fibers with different refractive indices&author=Ruffin A B&author=Li M J&author=Chen X&publication_year=2005&journal=Opt Lett&volume=30&pages=3123-3125
[103]
Brar K, Savage-Leuchs M, Henrie J, et al. Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers. In: Proceedings of SPIE, San Francisco, 2014. 89611R.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Brar K, Savage-Leuchs M, Henrie J, et al. Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers. In: Proceedings of SPIE, San Francisco, 2014. 89611R&
[104]
Xiao
H,
Dong
X L,
Zhou
P.
A 168-W high-power single-frequency amplifier in an all-fiber configuration.
Chin Phys B,
2012, 21: 034207
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A 168-W high-power single-frequency amplifier in an all-fiber configuration&author=Xiao H&author=Dong X L&author=Zhou P&publication_year=2012&journal=Chin Phys B&volume=21&pages=034207
[105]
Wang
X L,
Zhou
P,
Xiao
H.
310 W single-frequency all-fiber laser in master oscillator power amplification configuration 310 W single-frequency all-fiber laser.
Laser Phys Lett,
2012, 9: 591-595
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=310 W single-frequency all-fiber laser in master oscillator power amplification configuration 310 W single-frequency all-fiber laser&author=Wang X L&author=Zhou P&author=Xiao H&publication_year=2012&journal=Laser Phys Lett&volume=9&pages=591-595
[106]
Robin
C,
Dajani
I,
Pulford
B.
Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power.
Opt Lett,
2014, 39: 666-669
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power&author=Robin C&author=Dajani I&author=Pulford B&publication_year=2014&journal=Opt Lett&volume=39&pages=666-669
[107]
Jeong
Y,
Nilsson
J,
Sahu
J K.
Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power.
Opt Lett,
2005, 30: 459-461
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power&author=Jeong Y&author=Nilsson J&author=Sahu J K&publication_year=2005&journal=Opt Lett&volume=30&pages=459-461
[108]
Hildebrandt
M,
Frede
M,
Kwee
P.
Single-frequency master-oscillator photonic crystal fiber amplifier with 148 W output power.
Opt Express,
2006, 14: 11071-11076
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Single-frequency master-oscillator photonic crystal fiber amplifier with 148 W output power&author=Hildebrandt M&author=Frede M&author=Kwee P&publication_year=2006&journal=Opt Express&volume=14&pages=11071-11076
[109]
Gray
S,
Liu
A,
Walton
D T.
502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier.
Opt Express,
2007, 15: 17044-17050
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier&author=Gray S&author=Liu A&author=Walton D T&publication_year=2007&journal=Opt Express&volume=15&pages=17044-17050
[110]
Jeong
Y,
Nilsson
J,
Sahu
J K.
Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to 500 W.
IEEE J Sel Top Quantum Electron,
2007, 13: 546-551
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to 500 W&author=Jeong Y&author=Nilsson J&author=Sahu J K&publication_year=2007&journal=IEEE J Sel Top Quantum Electron&volume=13&pages=546-551
[111]
Mermelstein M D, Yablon A D, Headley C, et al. All-fiber 194 W single-frequency single-mode Yb-doped master-oscillator power-amplifier. In: Proceedings of SPIE, San Francisco, 2008. 68730L.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mermelstein M D, Yablon A D, Headley C, et al. All-fiber 194 W single-frequency single-mode Yb-doped master-oscillator power-amplifier. In: Proceedings of SPIE, San Francisco, 2008. 68730L&
[112]
Dajani
I,
Vergien
C,
Robin
C.
Experimental and theoretical investigations of photonic crystal fiber amplifier with 260 W output..
Opt Express,
2009, 17: 24317-24333
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Experimental and theoretical investigations of photonic crystal fiber amplifier with 260 W output.&author=Dajani I&author=Vergien C&author=Robin C&publication_year=2009&journal=Opt Express&volume=17&pages=24317-24333
[113]
Zeringue
C,
Vergien
C,
Dajani
I.
Pump-limited, 203 W, single-frequency monolithic fiber amplifier based on laser gain competition.
Opt Lett,
2011, 36: 618-620
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Pump-limited, 203 W, single-frequency monolithic fiber amplifier based on laser gain competition&author=Zeringue C&author=Vergien C&author=Dajani I&publication_year=2011&journal=Opt Lett&volume=36&pages=618-620
[114]
Zhu C, Hu I, Ma X, et al. Single-frequency and single-transverse mode Yb-doped CCC fiber MOPA with robust polarization SBS-free 511W output. Advances in Optical Materials. Optical Society of America, 2011. AMC5.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhu C, Hu I, Ma X, et al. Single-frequency and single-transverse mode Yb-doped CCC fiber MOPA with robust polarization SBS-free 511W output. Advances in Optical Materials. Optical Society of America, 2011. AMC5&
[115]
Theeg
T,
Sayinc
H,
Neumann
J.
All-Fiber Counter-Propagation Pumped Single Frequency Amplifier Stage With 300-W Output Power.
IEEE Photon Technol Lett,
2012, 24: 1864-1867
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=All-Fiber Counter-Propagation Pumped Single Frequency Amplifier Stage With 300-W Output Power&author=Theeg T&author=Sayinc H&author=Neumann J&publication_year=2012&journal=IEEE Photon Technol Lett&volume=24&pages=1864-1867
[116]
Zhang
L,
Cui
S,
Liu
C.
170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier.
Opt Express,
2013, 21: 5456-5462
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier&author=Zhang L&author=Cui S&author=Liu C&publication_year=2013&journal=Opt Express&volume=21&pages=5456-5462
[117]
Theeg
T,
Ottenhues
C,
Sayinc
H.
Core-pumped single-frequency fiber amplifier with an output power of 158 W.
Opt Lett,
2016, 41: 9-12
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Core-pumped single-frequency fiber amplifier with an output power of 158 W&author=Theeg T&author=Ottenhues C&author=Sayinc H&publication_year=2016&journal=Opt Lett&volume=41&pages=9-12
[118]
Wang
X,
Zhou
P,
Xiao
H.
Narrow linewidth all-fiber laser with 666 W power output.
High Power Laser andParticle Beams,
2012, 24: 1261-1262
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Narrow linewidth all-fiber laser with 666 W power output&author=Wang X&author=Zhou P&author=Xiao H&publication_year=2012&journal=High Power Laser andParticle Beams&volume=24&pages=1261-1262
[119]
Ran
Y,
Tao
R,
Ma
P.
560 W all fiber and polarization-maintaining amplifier with narrow linewidth and near-diffraction-limited beam quality.
Appl Opt,
2015, 54: 7258-7263
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=560 W all fiber and polarization-maintaining amplifier with narrow linewidth and near-diffraction-limited beam quality&author=Ran Y&author=Tao R&author=Ma P&publication_year=2015&journal=Appl Opt&volume=54&pages=7258-7263
[120]
Beier
F,
Hupel
C,
Kuhn
S.
Single mode 43 kW output power from a diode-pumped Yb-doped fiber amplifier.
Opt Express,
2017, 25: 14892-14899
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Single mode 43 kW output power from a diode-pumped Yb-doped fiber amplifier&author=Beier F&author=Hupel C&author=Kuhn S&publication_year=2017&journal=Opt Express&volume=25&pages=14892-14899
[121]
Li
T,
Zha
C,
Sun
Y.
3.5 kW bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser.
Laser Phys,
2018, 28: 105101
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=3.5 kW bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser&author=Li T&author=Zha C&author=Sun Y&publication_year=2018&journal=Laser Phys&volume=28&pages=105101
[122]
Yu
C X,
Shatrovoy
O,
Fan
T Y.
Diode-pumped narrow linewidth multi-kilowatt metalized Yb fiber amplifier.
Opt Lett,
2016, 41: 5202-5205
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Diode-pumped narrow linewidth multi-kilowatt metalized Yb fiber amplifier&author=Yu C X&author=Shatrovoy O&author=Fan T Y&publication_year=2016&journal=Opt Lett&volume=41&pages=5202-5205
[123]
Platonov N, Yagodkin R, De La Cruz J, et al. Up to 2.5-kW on non-PM fiber and 2.0-kW linear polarized on PM fiber narrow linewidth CW diffraction-limited fiber amplifiers in all-fiber format. In: Proceedings of SPIE, San Francisco, 2018. 105120E.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Platonov N, Yagodkin R, De La Cruz J, et al. Up to 2.5-kW on non-PM fiber and 2.0-kW linear polarized on PM fiber narrow linewidth CW diffraction-limited fiber amplifiers in all-fiber format. In: Proceedings of SPIE, San Francisco, 2018. 105120E&
[124]
Edgecumbe J, Bjrk D, Galipeau J, et al. Kilowatt-level PM amplifiers for beam combining. In: Frontiers in Optics. New York: Optical Society of America, 2008. FTuJ2.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Edgecumbe J, Bjrk D, Galipeau J, et al. Kilowatt-level PM amplifiers for beam combining. In: Frontiers in Optics. New York: Optical Society of America, 2008. FTuJ2&
[125]
Goodno
G D,
McNaught
S J,
Rothenberg
J E.
Active phase and polarization locking of a 14 kW fiber amplifier.
Opt Lett,
2010, 35: 1542-1544
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Active phase and polarization locking of a 14 kW fiber amplifier&author=Goodno G D&author=McNaught S J&author=Rothenberg J E&publication_year=2010&journal=Opt Lett&volume=35&pages=1542-1544
[126]
Guintrand C, Edgecumbe J, Farley K, et al. Stimulated Brillouin scattering threshold variations due to bend-induced birefringence in a non-polarization-maintaining fiber amplifier. In: Laser and Electro-Optics. New York: Optical Society of America, 2014. JW2A.23.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Guintrand C, Edgecumbe J, Farley K, et al. Stimulated Brillouin scattering threshold variations due to bend-induced birefringence in a non-polarization-maintaining fiber amplifier. In: Laser and Electro-Optics. New York: Optical Society of America, 2014. JW2A.23&
[127]
Flores
A,
Robin
C,
Lanari
A.
Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers.
Opt Express,
2014, 22: 17735-17744
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers&author=Flores A&author=Robin C&author=Lanari A&publication_year=2014&journal=Opt Express&volume=22&pages=17735-17744
[128]
Yagodkin R, Platonov N, Yusim A, et al. textgreater 1.5 kW narrow linewidth CW diffraction-limited fiber amplifier with 40nm bandwidth. In: Proceedings of SPIE, San Francisco, 2015. 972807.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yagodkin R, Platonov N, Yusim A, et al. textgreater 1.5 kW narrow linewidth CW diffraction-limited fiber amplifier with 40nm bandwidth. In: Proceedings of SPIE, San Francisco, 2015. 972807&
[129]
Xu
Y,
Fang
Q,
Qin
Y.
2 kW narrow spectral width monolithic continuous wave in a near-diffraction-limited fiber laser.
Appl Opt,
2015, 54: 9419-9421
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=2 kW narrow spectral width monolithic continuous wave in a near-diffraction-limited fiber laser&author=Xu Y&author=Fang Q&author=Qin Y&publication_year=2015&journal=Appl Opt&volume=54&pages=9419-9421
[130]
Nold J, Strecker M, Liem A, et al. Narrow linewidth single mode fiber amplifier with 2.3 kW average power. In: Lasers and Electro-Optics. New York: Optical Society of America, 2015. CJ$\_$11$\_$4.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nold J, Strecker M, Liem A, et al. Narrow linewidth single mode fiber amplifier with 2.3 kW average power. In: Lasers and Electro-Optics. New York: Optical Society of America, 2015. CJ$\_$11$\_$4&
[131]
Yu C X, Shatrovoy O, Fan T Y. All-glass fiber amplifier pumped by ultrahigh brightness pump. In: Proceedings of SPIE, San Francisco, 2015. 972806.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yu C X, Shatrovoy O, Fan T Y. All-glass fiber amplifier pumped by ultrahigh brightness pump. In: Proceedings of SPIE, San Francisco, 2015. 972806&
[132]
Avdokhin A, Gapontsev V, Kadwani P, et al. High average power quasi-CW single-mode green and UV fiber lasers. In: Proceedings of SPIE, San Francisco, 2015. 934704.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Avdokhin A, Gapontsev V, Kadwani P, et al. High average power quasi-CW single-mode green and UV fiber lasers. In: Proceedings of SPIE, San Francisco, 2015. 934704&
[133]
Beier
F,
Hupel
C,
Nold
J.
Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier.
Opt Express,
2016, 24: 6011-6020
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier&author=Beier F&author=Hupel C&author=Nold J&publication_year=2016&journal=Opt Express&volume=24&pages=6011-6020
[134]
Naderi
N A,
Flores
A,
Anderson
B M.
Beam combinable, kilowatt, all-fiber amplifier based on phase-modulated laser gain competition.
Opt Lett,
2016, 41: 3964-3967
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Beam combinable, kilowatt, all-fiber amplifier based on phase-modulated laser gain competition&author=Naderi N A&author=Flores A&author=Anderson B M&publication_year=2016&journal=Opt Lett&volume=41&pages=3964-3967
[135]
Kanskar M, Zhang J, Kaponen J, et al. Narrowband transverse-modal-instability (TMI)-free Yb-doped fiber amplifiers for directed energy applications. In: Proceedings of SPIE, San Francisco, 2018. 105120F.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kanskar M, Zhang J, Kaponen J, et al. Narrowband transverse-modal-instability (TMI)-free Yb-doped fiber amplifiers for directed energy applications. In: Proceedings of SPIE, San Francisco, 2018. 105120F&
[136]
Yu
H,
Zhang
H,
lv
H.
315 kW direct diode-pumped near diffraction-limited all-fiber-integrated fiber laser.
Appl Opt,
2015, 54: 4556-4560
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=315 kW direct diode-pumped near diffraction-limited all-fiber-integrated fiber laser&author=Yu H&author=Zhang H&author=lv H&publication_year=2015&journal=Appl Opt&volume=54&pages=4556-4560
[137]
Yu
H,
Wang
X,
Tao
R.
15 kW, near-diffraction-limited, high-efficiency, single-end-pumped all-fiber-integrated laser oscillator.
Appl Opt,
2014, 53: 8055-8059
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=15 kW, near-diffraction-limited, high-efficiency, single-end-pumped all-fiber-integrated laser oscillator&author=Yu H&author=Wang X&author=Tao R&publication_year=2014&journal=Appl Opt&volume=53&pages=8055-8059
[138]
Yang
B,
Zhang
H,
Wang
X.
Mitigating transverse mode instability in a single-end pumped all-fiber laser oscillator with a scaling power of up to 2 kW.
J Opt,
2016, 18: 105803
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mitigating transverse mode instability in a single-end pumped all-fiber laser oscillator with a scaling power of up to 2 kW&author=Yang B&author=Zhang H&author=Wang X&publication_year=2016&journal=J Opt&volume=18&pages=105803
[139]
Yang
B,
Zhang
H,
Shi
C.
Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 25 kW employing bidirectional-pump scheme.
Opt Express,
2016, 24: 27828-27835
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 25 kW employing bidirectional-pump scheme&author=Yang B&author=Zhang H&author=Shi C&publication_year=2016&journal=Opt Express&volume=24&pages=27828-27835
[140]
Yang
B,
Zhang
H,
Shi
C.
3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability.
J Opt,
2018, 20: 025802
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability&author=Yang B&author=Zhang H&author=Shi C&publication_year=2018&journal=J Opt&volume=20&pages=025802
[141]
Yang
B,
Zhang
H,
Ye
Q.
4.05 kW monolithic fiber laser oscillator based on home-made large mode area fiber Bragg gratings.
Chin Opt Lett,
2018, 16: 031407
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=4.05 kW monolithic fiber laser oscillator based on home-made large mode area fiber Bragg gratings&author=Yang B&author=Zhang H&author=Ye Q&publication_year=2018&journal=Chin Opt Lett&volume=16&pages=031407
[142]
Huang
L,
Wang
W,
Leng
J.
Experimental Investigation on Evolution of the Beam Quality in a 2-kW High Power Fiber Amplifier.
IEEE Photon Technol Lett,
2014, 26: 33-36
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Experimental Investigation on Evolution of the Beam Quality in a 2-kW High Power Fiber Amplifier&author=Huang L&author=Wang W&author=Leng J&publication_year=2014&journal=IEEE Photon Technol Lett&volume=26&pages=33-36
[143]
Xu
J,
Huang
L,
Leng
J.
101 kW superfluorescent source in all-fiberized MOPA configuration.
Opt Express,
2015, 23: 5485-5490
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=101 kW superfluorescent source in all-fiberized MOPA configuration&author=Xu J&author=Huang L&author=Leng J&publication_year=2015&journal=Opt Express&volume=23&pages=5485-5490
[144]
Zhou
P,
Xiao
H,
Leng
J.
High-power fiber lasers based on tandem pumping.
J Opt Soc Am B,
2017, 34: A29
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-power fiber lasers based on tandem pumping&author=Zhou P&author=Xiao H&author=Leng J&publication_year=2017&journal=J Opt Soc Am B&volume=34&pages=A29
[145]
Zhang H, Yang B, Wang X, et al. Home-produced fiber Bragg gratings-based all-fiber oscillator with the output power exceeding 5.2 kW. Chin J Laser, 2018, Accepted.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang H, Yang B, Wang X, et al. Home-produced fiber Bragg gratings-based all-fiber oscillator with the output power exceeding 5.2 kW. Chin J Laser, 2018, Accepted&
[146]
Xu
J M,
Ye
J,
Zhou
P.
Tandem pumping architecture enabled high power random fiber laser with near-diffraction-limited beam quality.
Sci China Technol Sci,
2018, 4
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tandem pumping architecture enabled high power random fiber laser with near-diffraction-limited beam quality&author=Xu J M&author=Ye J&author=Zhou P&publication_year=2018&journal=Sci China Technol Sci&volume=4&
[147]
Ikoma S, Nguyen H K, Kashiwagi M, et al. 3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing. In: Proceedings of SPIE, San Francisco, 2017. 100830Y.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ikoma S, Nguyen H K, Kashiwagi M, et al. 3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing. In: Proceedings of SPIE, San Francisco, 2017. 100830Y&
[148]
Shima K, Ikoma S, Uchiyama K, et al. 5-kW single stage all-fiber Yb-doped single-mode fiber laser for materials processing. In: Proceedings of SPIE, San Francisco, 2018. 105120C.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shima K, Ikoma S, Uchiyama K, et al. 5-kW single stage all-fiber Yb-doped single-mode fiber laser for materials processing. In: Proceedings of SPIE, San Francisco, 2018. 105120C&
[149]
Yang
B,
Shi
C,
Zhang
H.
Monolithic fiber laser oscillator with record high power.
Laser Phys Lett,
2018, 15: 075106
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Monolithic fiber laser oscillator with record high power&author=Yang B&author=Shi C&author=Zhang H&publication_year=2018&journal=Laser Phys Lett&volume=15&pages=075106
[150]
Xiao
Y,
Brunet
F,
Kanskar
M.
1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks.
Opt Express,
2012, 20: 3296-3301
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks&author=Xiao Y&author=Brunet F&author=Kanskar M&publication_year=2012&journal=Opt Express&volume=20&pages=3296-3301
[151]
Yu H, Kliner D A V, Liao K, et al. 1.2-kW single-mode fiber laser based on 100-W high-brightness pump diodes. In: Proceedings of SPIE, San Francisco, 2012. 82370G.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yu H, Kliner D A V, Liao K, et al. 1.2-kW single-mode fiber laser based on 100-W high-brightness pump diodes. In: Proceedings of SPIE, San Francisco, 2012. 82370G&
[152]
Ruppik S, Becker F, Grundmann F, et al. High-power disk and fiber lasers: a performance comparison. In: Proceedings of SPIE, San Francisco, 2012. 82350V.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ruppik S, Becker F, Grundmann F, et al. High-power disk and fiber lasers: a performance comparison. In: Proceedings of SPIE, San Francisco, 2012. 82350V&
[153]
Khitrov V, Minelly J D, Tumminelli R, et al. 3kW single-mode direct diode-pumped fiber laser. In: Proceedings of SPIE, San Francisco, 2014. 89610V.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Khitrov V, Minelly J D, Tumminelli R, et al. 3kW single-mode direct diode-pumped fiber laser. In: Proceedings of SPIE, San Francisco, 2014. 89610V&
[154]
Mashiko Y, Nguyen H K, Kashiwagi M, et al. 2 kW single-mode fiber laser with 20-m long delivery fiber and high SRS suppression. In: Proceedings of SPIE, San Francisco, 2016. 972805.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mashiko Y, Nguyen H K, Kashiwagi M, et al. 2 kW single-mode fiber laser with 20-m long delivery fiber and high SRS suppression. In: Proceedings of SPIE, San Francisco, 2016. 972805&
[155]
Tanaka D. High power fibre lasers for industrial applications. In: Proceedings of Conference on Lasers and Electro-Optics Pacific Rim, 2017.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tanaka D. High power fibre lasers for industrial applications. In: Proceedings of Conference on Lasers and Electro-Optics Pacific Rim, 2017&
[156]
Yao
T,
Ji
J,
Nilsson
J.
Ultra-Low Quantum-Defect Heating in Ytterbium-Doped Aluminosilicate Fibers.
J Lightwave Technol,
2014, 32: 429-434
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ultra-Low Quantum-Defect Heating in Ytterbium-Doped Aluminosilicate Fibers&author=Yao T&author=Ji J&author=Nilsson J&publication_year=2014&journal=J Lightwave Technol&volume=32&pages=429-434
[157]
Liu Z, Zhao Y. Investigation on the nonlinear problem in high power fiber laser. LASER 2016. Beijing: 2016.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Liu Z, Zhao Y. Investigation on the nonlinear problem in high power fiber laser. LASER 2016. Beijing: 2016&
[158]
Lin A, Zhan H, Peng K, et al. 10 kW-level pump-gain integrated functional laser fiber. High Power Laser and Particle Beams, 2018, 30: 60101.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lin A, Zhan H, Peng K, et al. 10 kW-level pump-gain integrated functional laser fiber. High Power Laser and Particle Beams, 2018, 30: 60101&
[159]
Lin
H H,
Tang
X,
Li
C Y.
10.6 kW high-brightness cascaded-end-pumped monolithic fiber lasers directly pumpedby laser diodes.
Chin J Laser,
2018, 45: 0315001
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=10.6 kW high-brightness cascaded-end-pumped monolithic fiber lasers directly pumpedby laser diodes&author=Lin H H&author=Tang X&author=Li C Y&publication_year=2018&journal=Chin J Laser&volume=45&pages=0315001
[160]
Shiner B. The impact of fiber laser technology on the world wide material processing market. In: Proceedings of CLEO: Applications and Technology 2013. San Jose: Optical Society of America, 2013. AF2J.1.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shiner B. The impact of fiber laser technology on the world wide material processing market. In: Proceedings of CLEO: Applications and Technology 2013. San Jose: Optical Society of America, 2013. AF2J.1&
[161]
Wang
J,
Yan
D,
Xiong
S.
High power all-fiber amplifier with different seed power injection.
Opt Express,
2016, 24: 14463-14469
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=High power all-fiber amplifier with different seed power injection&author=Wang J&author=Yan D&author=Xiong S&publication_year=2016&journal=Opt Express&volume=24&pages=14463-14469
[162]
Zhan
H,
Liu
Q,
Wang
Y.
5kW GTWave fiber amplifier directly pumped by commercial 976nm laser diodes.
Opt Express,
2016, 24: 27087-27095
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=5kW GTWave fiber amplifier directly pumped by commercial 976nm laser diodes&author=Zhan H&author=Liu Q&author=Wang Y&publication_year=2016&journal=Opt Express&volume=24&pages=27087-27095
[163]
Fang
Q,
Li
J,
Shi
W.
5 kW Near-Diffraction-Limited and 8 kW High-Brightness Monolithic Continuous Wave Fiber Lasers Directly Pumped by Laser Diodes.
IEEE Photonic J,
2017, 9: 1-7
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=5 kW Near-Diffraction-Limited and 8 kW High-Brightness Monolithic Continuous Wave Fiber Lasers Directly Pumped by Laser Diodes&author=Fang Q&author=Li J&author=Shi W&publication_year=2017&journal=IEEE Photonic J&volume=9&pages=1-7
[164]
Wang
J,
Yan
D,
Xiong
S.
Mode instability in high power all-fiber amplifier with large-mode-area gain fiber.
Optics Commun,
2017, 396: 123-126
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mode instability in high power all-fiber amplifier with large-mode-area gain fiber&author=Wang J&author=Yan D&author=Xiong S&publication_year=2017&journal=Optics Commun&volume=396&pages=123-126
[165]
Xiao
Q,
Li
D,
Huang
Y.
Directly diode and bi-directional pumping 6 kW continuous-wave all-fibre laser.
Laser Phys,
2018, 28: 125107
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Directly diode and bi-directional pumping 6 kW continuous-wave all-fibre laser&author=Xiao Q&author=Li D&author=Huang Y&publication_year=2018&journal=Laser Phys&volume=28&pages=125107
[166]
Jackson
S D,
Sabella
A,
Lancaster
D G.
Application and Development of High-Power and Highly Efficient Silica-Based Fiber Lasers Operating at 2 mum.
IEEE J Sel Top Quantum Electron,
2007, 13: 567-572
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Application and Development of High-Power and Highly Efficient Silica-Based Fiber Lasers Operating at 2 mum&author=Jackson S D&author=Sabella A&author=Lancaster D G&publication_year=2007&journal=IEEE J Sel Top Quantum Electron&volume=13&pages=567-572
[167]
Geng J, Wang Q, Lee Y, et al. Development of eye-safe fiber lasers near 2 $\mu$m. IEEE J Sel Top Quant Electron, 2014, 20: 150-160.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Geng J, Wang Q, Lee Y, et al. Development of eye-safe fiber lasers near 2 $\mu$m. IEEE J Sel Top Quant Electron, 2014, 20: 150-160&
[168]
Beyon
J Y.
High-energy Doppler lidar for wind measurements.
Opt Eng,
2007, 46: 116201
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-energy Doppler lidar for wind measurements&author=Beyon J Y&publication_year=2007&journal=Opt Eng&volume=46&pages=116201
[169]
Fried
N M.
Thulium fiber laser lithotripsy: an in vitro analysis of stone fragmentation using a modulated 110-watt Thulium fiber laser at 1.94 microm..
Lasers Surg Med,
2005, 37: 53-58
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Thulium fiber laser lithotripsy: an in vitro analysis of stone fragmentation using a modulated 110-watt Thulium fiber laser at 1.94 microm.&author=Fried N M&publication_year=2005&journal=Lasers Surg Med&volume=37&pages=53-58
[170]
Gesierich
W,
Reichenberger
F,
Fertl
A.
Endobronchial therapy with a thulium fiber laser (1940 nm)..
J Thoracic Cardiovascular Surgery,
2014, 147: 1827-1832
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Endobronchial therapy with a thulium fiber laser (1940 nm).&author=Gesierich W&author=Reichenberger F&author=Fertl A&publication_year=2014&journal=J Thoracic Cardiovascular Surgery&volume=147&pages=1827-1832
[171]
Mingareev
I,
Weirauch
F,
Olowinsky
A.
Welding of polymers using a 2μm thulium fiber laser.
Optics Laser Tech,
2012, 44: 2095-2099
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Welding of polymers using a 2μm thulium fiber laser&author=Mingareev I&author=Weirauch F&author=Olowinsky A&publication_year=2012&journal=Optics Laser Tech&volume=44&pages=2095-2099
[172]
Scholle K, Schäfer M, Lamrini S, et al. All-fiber linearly polarized high power 2-$\mu$m single mode Tm-fiber laser for plastic processing and Ho-laser pumping applications. In: Proceedings of SPIE, San Francisco, 2018. 105120O.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Scholle K, Schäfer M, Lamrini S, et al. All-fiber linearly polarized high power 2-$\mu$m single mode Tm-fiber laser for plastic processing and Ho-laser pumping applications. In: Proceedings of SPIE, San Francisco, 2018. 105120O&
[173]
Simakov N, Davidson A, Hemming A, et al. Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-$\mu$m source. In: Proceedings of SPIE, San Francisco, 2012. 82373K.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Simakov N, Davidson A, Hemming A, et al. Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-$\mu$m source. In: Proceedings of SPIE, San Francisco, 2012. 82373K&
[174]
Leindecker
N,
Marandi
A,
Byer
R L.
Octave-spanning ultrafast OPO with 2.6-6.1 μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser..
Opt Express,
2012, 20: 7046-7053
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Octave-spanning ultrafast OPO with 2.6-6.1 μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser.&author=Leindecker N&author=Marandi A&author=Byer R L&publication_year=2012&journal=Opt Express&volume=20&pages=7046-7053
[175]
Kubat
I,
Rosenberg Petersen
C,
M?ller
U V.
Thulium pumped mid-infrared 0.9-9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers..
Opt Express,
2014, 22: 3959-3967
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Thulium pumped mid-infrared 0.9-9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers.&author=Kubat I&author=Rosenberg Petersen C&author=M?ller U V&publication_year=2014&journal=Opt Express&volume=22&pages=3959-3967
[176]
Petersen
C R,
M?ller
U,
Kubat
I.
Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre.
Nat Photon,
2014, 8: 830-834
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre&author=Petersen C R&author=M?ller U&author=Kubat I&publication_year=2014&journal=Nat Photon&volume=8&pages=830-834
[177]
Goodno
G D,
Book
L D,
Rothenberg
J E.
Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier.
Opt Lett,
2009, 34: 1204-1206
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier&author=Goodno G D&author=Book L D&author=Rothenberg J E&publication_year=2009&journal=Opt Lett&volume=34&pages=1204-1206
[178]
Moulton
P F,
Rines
G A,
Slobodtchikov
E V.
Tm-Doped Fiber Lasers: Fundamentals and Power Scaling.
IEEE J Sel Top Quantum Electron,
2009, 15: 85-92
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tm-Doped Fiber Lasers: Fundamentals and Power Scaling&author=Moulton P F&author=Rines G A&author=Slobodtchikov E V&publication_year=2009&journal=IEEE J Sel Top Quantum Electron&volume=15&pages=85-92
[179]
Ehrenreich T, Leveille R, Majid I, et al. 1-kW, all-glass Tm: fiber laser. In: Proceedings of SPIE, San Francisco, 2010. 758016.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ehrenreich T, Leveille R, Majid I, et al. 1-kW, all-glass Tm: fiber laser. In: Proceedings of SPIE, San Francisco, 2010. 758016&
[180]
Hemming A, Simakov N, Davidson A, et al. A monolithic cladding pumped holmium-doped fibre laser. In: Proceedings of CLEO: Science and Innovations. San Jose: Optical Society of America, 2013. CW1M.1.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hemming A, Simakov N, Davidson A, et al. A monolithic cladding pumped holmium-doped fibre laser. In: Proceedings of CLEO: Science and Innovations. San Jose: Optical Society of America, 2013. CW1M.1&
[181]
Walbaum
T,
Heinzig
M,
Schreiber
T.
Monolithic thulium fiber laser with 567 W output power at 1970 nm.
Opt Lett,
2016, 41: 2632
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Monolithic thulium fiber laser with 567 W output power at 1970 nm&author=Walbaum T&author=Heinzig M&author=Schreiber T&publication_year=2016&journal=Opt Lett&volume=41&pages=2632
[182]
Newburgh
G A,
Zhang
J,
Dubinskii
M.
Tm-doped fiber laser resonantly diode-cladding-pumped at 1620 nm.
Laser Phys Lett,
2017, 14: 125101
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tm-doped fiber laser resonantly diode-cladding-pumped at 1620 nm&author=Newburgh G A&author=Zhang J&author=Dubinskii M&publication_year=2017&journal=Laser Phys Lett&volume=14&pages=125101
[183]
Moulton P F. High power Tm: silica fiber lasers: current status, prospects and challenges. In: Proceedings of Lasers and Electro-Optics Europe. San Jose: Optical Society of America, 2011. TF2$\_$3.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Moulton P F. High power Tm: silica fiber lasers: current status, prospects and challenges. In: Proceedings of Lasers and Electro-Optics Europe. San Jose: Optical Society of America, 2011. TF2$\_$3&
[184]
Creeden
D,
Johnson
B R,
Rines
G A.
High power resonant pumping of Tm-doped fiber amplifiers in core- and cladding-pumped configurations.
Opt Express,
2014, 22: 29067-29080
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=High power resonant pumping of Tm-doped fiber amplifiers in core- and cladding-pumped configurations&author=Creeden D&author=Johnson B R&author=Rines G A&publication_year=2014&journal=Opt Express&volume=22&pages=29067-29080
[185]
Meleshkevich M, Platonov N, Gapontsev D, et al. 415W single-mode CW thulium fiber laser in all-fiber format. In: Proceedings of European Conference on Lasers and Electro-Optics. San Jose: Optical Society of America, 2007. CP2$\_$3.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Meleshkevich M, Platonov N, Gapontsev D, et al. 415W single-mode CW thulium fiber laser in all-fiber format. In: Proceedings of European Conference on Lasers and Electro-Optics. San Jose: Optical Society of America, 2007. CP2$\_$3&
[186]
Wang
X,
Zhou
P,
Zhang
H.
100 W-level Tm-doped fiber laser pumped by 1173 nm Raman fiber lasers.
Opt Lett,
2014, 39: 4329-4332
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=100 W-level Tm-doped fiber laser pumped by 1173 nm Raman fiber lasers&author=Wang X&author=Zhou P&author=Zhang H&publication_year=2014&journal=Opt Lett&volume=39&pages=4329-4332
[187]
Wang
Y,
Yang
J,
Huang
C.
High power tandem-pumped thulium-doped fiber laser.
Opt Express,
2015, 23: 2991-2998
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=High power tandem-pumped thulium-doped fiber laser&author=Wang Y&author=Yang J&author=Huang C&publication_year=2015&journal=Opt Express&volume=23&pages=2991-2998
[188]
Jin
X,
Lee
E,
Luo
J.
High-efficiency ultrafast Tm-doped fiber amplifier based on resonant pumping.
Opt Lett,
2018, 43: 1431-1434
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-efficiency ultrafast Tm-doped fiber amplifier based on resonant pumping&author=Jin X&author=Lee E&author=Luo J&publication_year=2018&journal=Opt Lett&volume=43&pages=1431-1434
[189]
Sincore
A,
Bradford
J D,
Cook
J.
High Average Power Thulium-Doped Silica Fiber Lasers: Review of Systems and Concepts.
IEEE J Sel Top Quantum Electron,
2018, 24: 1-8
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=High Average Power Thulium-Doped Silica Fiber Lasers: Review of Systems and Concepts&author=Sincore A&author=Bradford J D&author=Cook J&publication_year=2018&journal=IEEE J Sel Top Quantum Electron&volume=24&pages=1-8
[190]
Shardlow P C, Jain D, Parker R, et al. Optimising Tm-Doped Silica Fibres for High Lasing Efficiency. In: Proceedings of The European Conference on Lasers and Electro-Optics. San Jose: Optical Society of America, 2015. CJ$\_$14$\_$3.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shardlow P C, Jain D, Parker R, et al. Optimising Tm-Doped Silica Fibres for High Lasing Efficiency. In: Proceedings of The European Conference on Lasers and Electro-Optics. San Jose: Optical Society of America, 2015. CJ$\_$14$\_$3&
[191]
Tumminelli R, Petit V, Carter A, et al. Highly doped and highly efficient Tm doped fiber laser. In: Proceedings of SPIE, San Francisco, 2018. 105120M.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tumminelli R, Petit V, Carter A, et al. Highly doped and highly efficient Tm doped fiber laser. In: Proceedings of SPIE, San Francisco, 2018. 105120M&
[192]
Shardlow P C, Simakov N, Billaud A, et al. Holmium doped fibre optimised for resonant cladding pumping. In: Proceedings of Lasers and Electro-Optics. San Jose: Optical Society of America, 2017. CJ$\_$11$\_$4.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shardlow P C, Simakov N, Billaud A, et al. Holmium doped fibre optimised for resonant cladding pumping. In: Proceedings of Lasers and Electro-Optics. San Jose: Optical Society of America, 2017. CJ$\_$11$\_$4&
[193]
Wang
X,
Zhou
P,
Wang
X.
102 W monolithic single frequency Tm-doped fiber MOPA.
Opt Express,
2013, 21: 32386-32392
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=102 W monolithic single frequency Tm-doped fiber MOPA&author=Wang X&author=Zhou P&author=Wang X&publication_year=2013&journal=Opt Express&volume=21&pages=32386-32392
[194]
Wang
X,
Jin
X,
Wu
W.
310-W Single Frequency Tm-Doped All-Fiber MOPA.
IEEE Photon Technol Lett,
2015, 27: 677-680
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=310-W Single Frequency Tm-Doped All-Fiber MOPA&author=Wang X&author=Jin X&author=Wu W&publication_year=2015&journal=IEEE Photon Technol Lett&volume=27&pages=677-680
[195]
Wang
X,
Jin
X,
Zhou
P.
All-Fiber-Integrated Narrowband Nanosecond Pulsed Tm-Doped Fiber MOPA.
IEEE Photon Technol Lett,
2015, 27: 1473-1476
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=All-Fiber-Integrated Narrowband Nanosecond Pulsed Tm-Doped Fiber MOPA&author=Wang X&author=Jin X&author=Zhou P&publication_year=2015&journal=IEEE Photon Technol Lett&volume=27&pages=1473-1476
[196]
Wang
X,
Jin
X,
Zhou
P.
All-fiber high-average power nanosecond-pulsed master-oscillator power amplifier at 2??μm with mJ-level pulse energy..
Appl Opt,
2016, 55: 1941-1945
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=All-fiber high-average power nanosecond-pulsed master-oscillator power amplifier at 2??μm with mJ-level pulse energy.&author=Wang X&author=Jin X&author=Zhou P&publication_year=2016&journal=Appl Opt&volume=55&pages=1941-1945
[197]
Jin
X,
Wang
X,
Xu
J.
High-power thulium-doped all-fibre amplified spontaneous emission sources.
J Opt,
2015, 17: 045702
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-power thulium-doped all-fibre amplified spontaneous emission sources&author=Jin X&author=Wang X&author=Xu J&publication_year=2015&journal=J Opt&volume=17&pages=045702
[198]
Jin
X,
Wang
X,
Xu
J.
High-Power Thulium-Doped All-Fiber Superfluorescent Source With Ultranarrow Linewidth.
IEEE Photonic J,
2015, 7: 1-6
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-Power Thulium-Doped All-Fiber Superfluorescent Source With Ultranarrow Linewidth&author=Jin X&author=Wang X&author=Xu J&publication_year=2015&journal=IEEE Photonic J&volume=7&pages=1-6
[199]
Wang
X,
Jin
X,
Zhou
P.
High power, widely tunable, narrowband superfluorescent source at 2 μm based on a monolithic Tm-doped fiber amplifier..
Opt Express,
2015, 23: 3382-3389
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=High power, widely tunable, narrowband superfluorescent source at 2 μm based on a monolithic Tm-doped fiber amplifier.&author=Wang X&author=Jin X&author=Zhou P&publication_year=2015&journal=Opt Express&volume=23&pages=3382-3389
[200]
Wang
X,
Zhou
P,
Miao
Y.
Raman fiber laser-pumped high-power, efficient Ho-doped fiber laser.
J Opt Soc Am B,
2014, 31: 2476
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Raman fiber laser-pumped high-power, efficient Ho-doped fiber laser&author=Wang X&author=Zhou P&author=Miao Y&publication_year=2014&journal=J Opt Soc Am B&volume=31&pages=2476
[201]
Jin
X,
Du
X,
Wang
X.
High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser.
Sci Rep,
2016, 6: 30052
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser&author=Jin X&author=Du X&author=Wang X&publication_year=2016&journal=Sci Rep&volume=6&pages=30052
[202]
Smith
A V,
Smith
J J.
Mode instability thresholds for Tm-doped fiber amplifiers pumped at 790 nm.
Opt Express,
2016, 24: 975-992
CrossRef
PubMed
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mode instability thresholds for Tm-doped fiber amplifiers pumped at 790 nm&author=Smith A V&author=Smith J J&publication_year=2016&journal=Opt Express&volume=24&pages=975-992
[203]
Tao R, Zhou P, Xiao H, et al. Theoretical study of high power mode instabilities in 2 $\mu$m thulium-doped fiber amplifiers. In: Proceedings of the 16th International Conference on Laser Optics, St. Petersburg, 2014.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tao R, Zhou P, Xiao H, et al. Theoretical study of high power mode instabilities in 2 $\mu$m thulium-doped fiber amplifiers. In: Proceedings of the 16th International Conference on Laser Optics, St. Petersburg, 2014&
[204]
Bochove
E J,
Shakir
S A.
Analysis of a Spatial-Filtering Passive Fiber Laser Beam Combining System.
IEEE J Sel Top Quantum Electron,
2009, 15: 320-327
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Analysis of a Spatial-Filtering Passive Fiber Laser Beam Combining System&author=Bochove E J&author=Shakir S A&publication_year=2009&journal=IEEE J Sel Top Quantum Electron&volume=15&pages=320-327
[205]
Yang
Y,
Hu
M,
He
B.
Passive coherent beam combining of four Yb-doped fiber amplifier chains with injection-locked seed source.
Opt Lett,
2013, 38: 854-856
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Passive coherent beam combining of four Yb-doped fiber amplifier chains with injection-locked seed source&author=Yang Y&author=Hu M&author=He B&publication_year=2013&journal=Opt Lett&volume=38&pages=854-856
[206]
Huo
Y,
Cheo
P K,
King
G G.
Fundamental mode operation of a 19-core phase-locked Yb-doped fiber amplifier.
Opt Express,
2004, 12: 6230-6239
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fundamental mode operation of a 19-core phase-locked Yb-doped fiber amplifier&author=Huo Y&author=Cheo P K&author=King G G&publication_year=2004&journal=Opt Express&volume=12&pages=6230-6239
[207]
Corcoran
C J,
Durville
F.
Experimental demonstration of a phase-locked laser array using a self-Fourier cavity.
Appl Phys Lett,
2005, 86: 201118
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Experimental demonstration of a phase-locked laser array using a self-Fourier cavity&author=Corcoran C J&author=Durville F&publication_year=2005&journal=Appl Phys Lett&volume=86&pages=201118
[208]
Wang
B,
Mies
E,
Minden
M.
All-fiber 50 W coherently combined passive laser array.
Opt Lett,
2009, 34: 863-865
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=All-fiber 50 W coherently combined passive laser array&author=Wang B&author=Mies E&author=Minden M&publication_year=2009&journal=Opt Lett&volume=34&pages=863-865
[209]
Chen
Z,
Hou
J,
Zhou
P.
Mutual Injection-Locking and Coherent Combining of Two Individual Fiber Lasers.
IEEE J Quantum Electron,
2008, 44: 515-519
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mutual Injection-Locking and Coherent Combining of Two Individual Fiber Lasers&author=Chen Z&author=Hou J&author=Zhou P&publication_year=2008&journal=IEEE J Quantum Electron&volume=44&pages=515-519
[210]
Steinhausser
B,
Brignon
A,
Lallier
E.
High energy, single-mode, narrow-linewidth fiber laser source using stimulated Brillouin scattering beam cleanup.
Opt Express,
2007, 15: 6464-6469
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=High energy, single-mode, narrow-linewidth fiber laser source using stimulated Brillouin scattering beam cleanup&author=Steinhausser B&author=Brignon A&author=Lallier E&publication_year=2007&journal=Opt Express&volume=15&pages=6464-6469
[211]
Kong
H J,
Yoon
J W,
Shin
J S.
Long-term stabilized two-beam combination laser amplifier with stimulated Brillouin scattering mirrors.
Appl Phys Lett,
2008, 92: 021120
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Long-term stabilized two-beam combination laser amplifier with stimulated Brillouin scattering mirrors&author=Kong H J&author=Yoon J W&author=Shin J S&publication_year=2008&journal=Appl Phys Lett&volume=92&pages=021120
[212]
Rothenberg J E. Passive coherent phasing of fiber laser arrays. In: Broeng J, Headley C, ed. In: Proceedings of SPIE, San Francisco, 2008. 687315.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Rothenberg J E. Passive coherent phasing of fiber laser arrays. In: Broeng J, Headley C, ed. In: Proceedings of SPIE, San Francisco, 2008. 687315&
[213]
Yu
C X,
Augst
S J,
Redmond
S M.
Coherent combining of a 4 kW, eight-element fiber amplifier array.
Opt Lett,
2011, 36: 2686-2688
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Coherent combining of a 4 kW, eight-element fiber amplifier array&author=Yu C X&author=Augst S J&author=Redmond S M&publication_year=2011&journal=Opt Lett&volume=36&pages=2686-2688
[214]
Wang
X,
Zhou
P,
Ma
Y.
Active phasing a nine-element 1.14kW all-fiber two-tone MOPA array using SPGD algorithm.
Opt Lett,
2011, 36: 3121-3123
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Active phasing a nine-element 1.14kW all-fiber two-tone MOPA array using SPGD algorithm&author=Wang X&author=Zhou P&author=Ma Y&publication_year=2011&journal=Opt Lett&volume=36&pages=3121-3123
[215]
Wang
X,
Leng
J,
Zhou
P.
1.8-kW simultaneous spectral and coherent combining of three-tone nine-channel all-fiber amplifier array.
Appl Phys B,
2012, 107: 785-790
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=1.8-kW simultaneous spectral and coherent combining of three-tone nine-channel all-fiber amplifier array&author=Wang X&author=Leng J&author=Zhou P&publication_year=2012&journal=Appl Phys B&volume=107&pages=785-790
[216]
Flores A, Ehrehreich T, Holten R, et al. Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light. In: Proceedings of SPIE, San Francisco, 2016. 97281Y.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Flores A, Ehrehreich T, Holten R, et al. Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light. In: Proceedings of SPIE, San Francisco, 2016. 97281Y&
[217]
McNaught
S J,
Thielen
P A,
Adams
L N.
Scalable Coherent Combining of Kilowatt Fiber Amplifiers Into a 2.4-kW Beam.
IEEE J Sel Top Quantum Electron,
2014, 20: 174-181
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Scalable Coherent Combining of Kilowatt Fiber Amplifiers Into a 2.4-kW Beam&author=McNaught S J&author=Thielen P A&author=Adams L N&publication_year=2014&journal=IEEE J Sel Top Quantum Electron&volume=20&pages=174-181
[218]
Yu
C X,
Kansky
J E,
Shaw
S E J.
Coherent beam combining of large number of PM fibres in 2-D fibre array.
Electron Lett,
2006, 42: 1024-1025
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Coherent beam combining of large number of PM fibres in 2-D fibre array&author=Yu C X&author=Kansky J E&author=Shaw S E J&publication_year=2006&journal=Electron Lett&volume=42&pages=1024-1025
[219]
Huang
Z,
Tang
X,
Luo
Y.
Active phase locking of thirty fiber channels using multilevel phase dithering method.
Rev Sci Instrum,
2016, 87: 033109
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Active phase locking of thirty fiber channels using multilevel phase dithering method&author=Huang Z&author=Tang X&author=Luo Y&publication_year=2016&journal=Rev Sci Instrum&volume=87&pages=033109
[220]
Su
R,
Zhou
P,
Wang
X.
Phase locking of a coherent array of 32 fiber lasers.
High Power Laser and ParticleBeams,
2014, 26: 10101
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Phase locking of a coherent array of 32 fiber lasers&author=Su R&author=Zhou P&author=Wang X&publication_year=2014&journal=High Power Laser and ParticleBeams&volume=26&pages=10101
[221]
Bourderionnet
J,
Bellanger
C,
Primot
J.
Collective coherent phase combining of 64 fibers.
Opt Express,
2011, 19: 17053-17058
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Collective coherent phase combining of 64 fibers&author=Bourderionnet J&author=Bellanger C&author=Primot J&publication_year=2011&journal=Opt Express&volume=19&pages=17053-17058
[222]
Bellanger
C,
Toulon
B,
Primot
J.
Collective phase measurement of an array of fiber lasers by quadriwave lateral shearing interferometry for coherent beam combining.
Opt Lett,
2010, 35: 3931-3933
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Collective phase measurement of an array of fiber lasers by quadriwave lateral shearing interferometry for coherent beam combining&author=Bellanger C&author=Toulon B&author=Primot J&publication_year=2010&journal=Opt Lett&volume=35&pages=3931-3933
[223]
Seise
E,
Klenke
A,
Limpert
J.
Coherent addition of fiber-amplified ultrashort laser pulses.
Opt Express,
2010, 18: 27827-27835
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Coherent addition of fiber-amplified ultrashort laser pulses&author=Seise E&author=Klenke A&author=Limpert J&publication_year=2010&journal=Opt Express&volume=18&pages=27827-27835
[224]
Müller
M,
Kienel
M,
Klenke
A.
1 kW 1 mJ eight-channel ultrafast fiber laser.
Opt Lett,
2016, 41: 3439-3442
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=1 kW 1 mJ eight-channel ultrafast fiber laser&author=Müller M&author=Kienel M&author=Klenke A&publication_year=2016&journal=Opt Lett&volume=41&pages=3439-3442
[225]
Goodno
G D,
Asman
C P,
Anderegg
J.
Brightness-Scaling Potential of Actively Phase-Locked Solid-State Laser Arrays.
IEEE J Sel Top Quantum Electron,
2007, 13: 460-472
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Brightness-Scaling Potential of Actively Phase-Locked Solid-State Laser Arrays&author=Goodno G D&author=Asman C P&author=Anderegg J&publication_year=2007&journal=IEEE J Sel Top Quantum Electron&volume=13&pages=460-472
[226]
Xiao
R,
Hou
J,
Liu
M.
Coherent combining technology of master oscillator power amplifier fiber arrays.
Opt Express,
2008, 16: 2015-2022
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Coherent combining technology of master oscillator power amplifier fiber arrays&author=Xiao R&author=Hou J&author=Liu M&publication_year=2008&journal=Opt Express&volume=16&pages=2015-2022
[227]
Vorontsov
M A,
Carhart
G W,
Ricklin
J C.
Adaptive phase-distortioncorrection based on parallel gradient-descent optimization.
Opt Lett,
1997, 22: 907-909
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Adaptive phase-distortioncorrection based on parallel gradient-descent optimization&author=Vorontsov M A&author=Carhart G W&author=Ricklin J C&publication_year=1997&journal=Opt Lett&volume=22&pages=907-909
[228]
Zhou
P,
Liu
Z,
Wang
X.
Coherent beam combination of two-dimensional high power fiber amplifier array using stochastic parallel gradient descent algorithm.
Appl Phys Lett,
2009, 94: 231106
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Coherent beam combination of two-dimensional high power fiber amplifier array using stochastic parallel gradient descent algorithm&author=Zhou P&author=Liu Z&author=Wang X&publication_year=2009&journal=Appl Phys Lett&volume=94&pages=231106
[229]
Zhou
P,
Liu
Z,
Wang
X.
Coherent Beam Combining of Fiber Amplifiers Using Stochastic Parallel Gradient Descent Algorithm and Its Application.
IEEE J Sel Top Quantum Electron,
2009, 15: 248-256
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Coherent Beam Combining of Fiber Amplifiers Using Stochastic Parallel Gradient Descent Algorithm and Its Application&author=Zhou P&author=Liu Z&author=Wang X&publication_year=2009&journal=IEEE J Sel Top Quantum Electron&volume=15&pages=248-256
[230]
Shay
T M.
Theory of electronically phased coherent beam combination without a reference beam.
Opt Express,
2006, 14: 12188-12195
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Theory of electronically phased coherent beam combination without a reference beam&author=Shay T M&publication_year=2006&journal=Opt Express&volume=14&pages=12188-12195
[231]
Ma
Y,
Zhou
P,
Wang
X.
Coherent beam combination with single frequency dithering technique.
Opt Lett,
2010, 35: 1308-1310
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Coherent beam combination with single frequency dithering technique&author=Ma Y&author=Zhou P&author=Wang X&publication_year=2010&journal=Opt Lett&volume=35&pages=1308-1310
[232]
Jiang
M,
Su
R,
Zhang
Z.
Coherent beam combining of fiber lasers using a CDMA-based single-frequency dithering technique.
Appl Opt,
2017, 56: 4255-4260
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Coherent beam combining of fiber lasers using a CDMA-based single-frequency dithering technique&author=Jiang M&author=Su R&author=Zhang Z&publication_year=2017&journal=Appl Opt&volume=56&pages=4255-4260
[233]
Su
R T,
Zhou
P,
Wang
X L.
High Power Narrow-Linewidth Nanosecond All-Fiber Lasers and their Actively Coherent Beam Combination.
IEEE J Sel Top Quantum Electron,
2014, 20: 206-218
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=High Power Narrow-Linewidth Nanosecond All-Fiber Lasers and their Actively Coherent Beam Combination&author=Su R T&author=Zhou P&author=Wang X L&publication_year=2014&journal=IEEE J Sel Top Quantum Electron&volume=20&pages=206-218
[234]
Su
R,
Zhang
Z,
Zhou
P.
Coherent Beam Combining of a Fiber Lasers Array Based on Cascaded Phase Control.
IEEE Photon Technol Lett,
2016, 28: 2585-2588
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Coherent Beam Combining of a Fiber Lasers Array Based on Cascaded Phase Control&author=Su R&author=Zhang Z&author=Zhou P&publication_year=2016&journal=IEEE Photon Technol Lett&volume=28&pages=2585-2588
[235]
Taylor
J R,
Anderson
M S,
Bunton
P H.
High-Speed Tilt Mirror for Image Stabilization.
Appl Opt,
1999, 38: 219-223
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-Speed Tilt Mirror for Image Stabilization&author=Taylor J R&author=Anderson M S&author=Bunton P H&publication_year=1999&journal=Appl Opt&volume=38&pages=219-223
[236]
Wilcox
C C,
Andrews
J R,
Restaino
S R.
Analysis of a combined tip-tilt and deformable mirror.
Opt Lett,
2006, 31: 679-681
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Analysis of a combined tip-tilt and deformable mirror&author=Wilcox C C&author=Andrews J R&author=Restaino S R&publication_year=2006&journal=Opt Lett&volume=31&pages=679-681
[237]
Wang
X,
Wang
X,
Zhou
P.
350-W Coherent Beam Combining of Fiber Amplifiers With Tilt-Tip and Phase-Locking Control.
IEEE Photon Technol Lett,
2012, 24: 1781-1784
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=350-W Coherent Beam Combining of Fiber Amplifiers With Tilt-Tip and Phase-Locking Control&author=Wang X&author=Wang X&author=Zhou P&publication_year=2012&journal=IEEE Photon Technol Lett&volume=24&pages=1781-1784
[238]
Vorontsov
M A,
Weyrauch
T,
Beresnev
L A.
Adaptive Array of Phase-Locked Fiber Collimators: Analysis and Experimental Demonstration.
IEEE J Sel Top Quantum Electron,
2009, 15: 269-280
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Adaptive Array of Phase-Locked Fiber Collimators: Analysis and Experimental Demonstration&author=Vorontsov M A&author=Weyrauch T&author=Beresnev L A&publication_year=2009&journal=IEEE J Sel Top Quantum Electron&volume=15&pages=269-280
[239]
Geng
C,
Luo
W,
Tan
Y.
Experimental demonstration of using divergence cost-function in SPGD algorithm for coherent beam combining with tip/tilt control.
Opt Express,
2013, 21: 25045-25055
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Experimental demonstration of using divergence cost-function in SPGD algorithm for coherent beam combining with tip/tilt control&author=Geng C&author=Luo W&author=Tan Y&publication_year=2013&journal=Opt Express&volume=21&pages=25045-25055
[240]
Geng
C,
Li
X,
Zhang
X.
Coherent beam combination of an optical array using adaptive fiber optics collimators.
Optics Commun,
2011, 284: 5531-5536
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Coherent beam combination of an optical array using adaptive fiber optics collimators&author=Geng C&author=Li X&author=Zhang X&publication_year=2011&journal=Optics Commun&volume=284&pages=5531-5536
[241]
Zhi
D,
Ma
P,
Ma
Y.
Novel adaptive fiber-optics collimator for coherent beam combination.
Opt Express,
2014, 22: 31520-31528
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Novel adaptive fiber-optics collimator for coherent beam combination&author=Zhi D&author=Ma P&author=Ma Y&publication_year=2014&journal=Opt Express&volume=22&pages=31520-31528
[242]
Zhi
D,
Ma
Y,
Ma
P.
Adaptive fiber optics collimator based on flexible hinges.
Appl Opt,
2014, 53: 5434-5438
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Adaptive fiber optics collimator based on flexible hinges&author=Zhi D&author=Ma Y&author=Ma P&publication_year=2014&journal=Appl Opt&volume=53&pages=5434-5438
[243]
Beresnev L A, Weyrauch T, Vorontsov M A, et al. Development of adaptive fiber collimators for conformal fiber-based beam projection systems. In: Proceedings of SPIE, San Francisco, 2008. 709008.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Beresnev L A, Weyrauch T, Vorontsov M A, et al. Development of adaptive fiber collimators for conformal fiber-based beam projection systems. In: Proceedings of SPIE, San Francisco, 2008. 709008&
[244]
Anderegg J, Brosnan S, Cheung E, et al. Coherently coupled high-power fiber arrays. In: Proceedings of SPIE, San Francisco, 2006. 61020U.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Anderegg J, Brosnan S, Cheung E, et al. Coherently coupled high-power fiber arrays. In: Proceedings of SPIE, San Francisco, 2006. 61020U&
[245]
Fan
X,
Liu
J,
Liu
J.
Coherent combining of a seven-element hexagonal fiber array.
Optics Laser Tech,
2010, 42: 274-279
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Coherent combining of a seven-element hexagonal fiber array&author=Fan X&author=Liu J&author=Liu J&publication_year=2010&journal=Optics Laser Tech&volume=42&pages=274-279
[246]
Liu Z, Xu X, Chen J, et al. Multi-beam high fill factor beam combiner.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Liu Z, Xu X, Chen J, et al. Multi-beam high fill factor beam combiner&
[247]
Cheung
E C,
Ho
J G,
Goodno
G D.
Diffractive-optics-based beam combination of a phase-locked fiber laser array.
Opt Lett,
2008, 33: 354-356
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Diffractive-optics-based beam combination of a phase-locked fiber laser array&author=Cheung E C&author=Ho J G&author=Goodno G D&publication_year=2008&journal=Opt Lett&volume=33&pages=354-356
[248]
Flores A, Dajani I. Kilowatt-class, all-fiber amplifiers for beam combining. In: Proceedings of SPIE, 2016.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Flores A, Dajani I. Kilowatt-class, all-fiber amplifiers for beam combining. In: Proceedings of SPIE, 2016&
[249]
Christensen S E, Koski O. 2-Dimensional waveguide coherent beam combiner. In: Proceedings of Advanced Solid-State Photonics. Washington: Optical Society of America, 2007. WC1.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Christensen S E, Koski O. 2-Dimensional waveguide coherent beam combiner. In: Proceedings of Advanced Solid-State Photonics. Washington: Optical Society of America, 2007. WC1&
[250]
Uberna
R,
Bratcher
A,
Alley
T G.
Coherent combination of high power fiber amplifiers in a two-dimensional re-imaging waveguide.
Opt Express,
2010, 18: 13547-13553
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Coherent combination of high power fiber amplifiers in a two-dimensional re-imaging waveguide&author=Uberna R&author=Bratcher A&author=Alley T G&publication_year=2010&journal=Opt Express&volume=18&pages=13547-13553
[251]
Uberna
R,
Bratcher
A,
Tiemann
B G.
Coherent Polarization Beam Combination.
IEEE J Quantum Electron,
2010, 46: 1191-1196
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Coherent Polarization Beam Combination&author=Uberna R&author=Bratcher A&author=Tiemann B G&publication_year=2010&journal=IEEE J Quantum Electron&volume=46&pages=1191-1196
[252]
Ma
P F,
Zhou
P,
Su
R T.
Coherent polarization beam combining of eight fiber lasers using single-frequency dithering technique Coherent polarization beam combining of eight fiber lasers.
Laser Phys Lett,
2012, 9: 456-458
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Coherent polarization beam combining of eight fiber lasers using single-frequency dithering technique Coherent polarization beam combining of eight fiber lasers&author=Ma P F&author=Zhou P&author=Su R T&publication_year=2012&journal=Laser Phys Lett&volume=9&pages=456-458
[253]
Kozlov
V A,
Hernández-Cordero
J,
Morse
T F.
All-fibercoherent beam combining of fiber lasers.
Opt Lett,
1999, 24: 1814-1816
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=All-fibercoherent beam combining of fiber lasers&author=Kozlov V A&author=Hernández-Cordero J&author=Morse T F&publication_year=1999&journal=Opt Lett&volume=24&pages=1814-1816
[254]
Montoya
J,
Hwang
C,
Martz
D.
Photonic lantern kW-class fiber amplifier.
Opt Express,
2017, 25: 27543-27550
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Photonic lantern kW-class fiber amplifier&author=Montoya J&author=Hwang C&author=Martz D&publication_year=2017&journal=Opt Express&volume=25&pages=27543-27550
[255]
Su
R,
Zhou
P,
Wang
X.
Impact of temporal and spectral aberrations on coherent beam combination of nanosecond fiber lasers.
Appl Opt,
2013, 52: 2187-2193
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Impact of temporal and spectral aberrations on coherent beam combination of nanosecond fiber lasers&author=Su R&author=Zhou P&author=Wang X&publication_year=2013&journal=Appl Opt&volume=52&pages=2187-2193
[256]
Yu
H L,
Ma
P F,
Wang
X L.
Influence of temporal-spectral effects on ultrafast fiber coherent polarization beam combining system.
Laser Phys Lett,
2015, 12: 105301
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Influence of temporal-spectral effects on ultrafast fiber coherent polarization beam combining system&author=Yu H L&author=Ma P F&author=Wang X L&publication_year=2015&journal=Laser Phys Lett&volume=12&pages=105301
[257]
Klenke
A,
Seise
E,
Limpert
J.
Basic considerations on coherent combining of ultrashort laser pulses.
Opt Express,
2011, 19: 25379-25387
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Basic considerations on coherent combining of ultrashort laser pulses&author=Klenke A&author=Seise E&author=Limpert J&publication_year=2011&journal=Opt Express&volume=19&pages=25379-25387
[258]
Su
R,
Zhou
P,
Wang
X.
Active coherent beam combination of two high-power single-frequency nanosecond fiber amplifiers.
Opt Lett,
2012, 37: 497-499
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Active coherent beam combination of two high-power single-frequency nanosecond fiber amplifiers&author=Su R&author=Zhou P&author=Wang X&publication_year=2012&journal=Opt Lett&volume=37&pages=497-499
[259]
Su
R,
Zhou
P,
Ma
Y.
1.2 kW Average Power from Coherently Combined Single-Frequency Nanosecond All-Fiber Amplifier Array.
Appl Phys Express,
2013, 6: 122702
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=1.2 kW Average Power from Coherently Combined Single-Frequency Nanosecond All-Fiber Amplifier Array&author=Su R&author=Zhou P&author=Ma Y&publication_year=2013&journal=Appl Phys Express&volume=6&pages=122702
[260]
Ma
P,
Tao
R,
Wang
X.
Coherent polarization beam combination of four mode-locked fiber MOPAs in picosecond regime.
Opt Express,
2014, 22: 4123-4130
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Coherent polarization beam combination of four mode-locked fiber MOPAs in picosecond regime&author=Ma P&author=Tao R&author=Wang X&publication_year=2014&journal=Opt Express&volume=22&pages=4123-4130
[261]
Zhou
P,
Wang
X,
Ma
Y.
Stable coherent beam combination by active phasing a mutual injection-locked fiber laser array.
Opt Lett,
2010, 35: 950-952
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stable coherent beam combination by active phasing a mutual injection-locked fiber laser array&author=Zhou P&author=Wang X&author=Ma Y&publication_year=2010&journal=Opt Lett&volume=35&pages=950-952
[262]
Zhou
P,
Ma
Y,
Wang
X.
Coherent beam combination of a hexagonal distributed high power fiber amplifier array.
Appl Opt,
2009, 48: 6537-6540
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Coherent beam combination of a hexagonal distributed high power fiber amplifier array&author=Zhou P&author=Ma Y&author=Wang X&publication_year=2009&journal=Appl Opt&volume=48&pages=6537-6540
[263]
Zhou
P,
Ma
Y,
Wang
X.
Coherent beam combination of three two-tone fiber amplifiers using stochastic parallel gradient descent algorithm.
Opt Lett,
2009, 34: 2939-2941
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Coherent beam combination of three two-tone fiber amplifiers using stochastic parallel gradient descent algorithm&author=Zhou P&author=Ma Y&author=Wang X&publication_year=2009&journal=Opt Lett&volume=34&pages=2939-2941
[264]
Su
R,
Zhou
P,
Wang
X.
Actively Coherent Beam Combining of Two Single-Frequency 1083 nm Nanosecond Fiber Amplifiers in Low-Repetition-Rate.
IEEE Photon Technol Lett,
2013, 25: 1485-1487
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Actively Coherent Beam Combining of Two Single-Frequency 1083 nm Nanosecond Fiber Amplifiers in Low-Repetition-Rate&author=Su R&author=Zhou P&author=Wang X&publication_year=2013&journal=IEEE Photon Technol Lett&volume=25&pages=1485-1487
[265]
Chen
Z,
Zhou
P,
Wang
X.
Synchronization and coherent addition of three pulsed fiber lasers by mutual injection and phase modulation.
Optics Laser Tech,
2009, 41: 710-713
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Synchronization and coherent addition of three pulsed fiber lasers by mutual injection and phase modulation&author=Chen Z&author=Zhou P&author=Wang X&publication_year=2009&journal=Optics Laser Tech&volume=41&pages=710-713
[266]
Zhou
P,
Wang
X,
Chen
Z.
Coherent combining of two pulsed fibre lasers in phase modulated mutually coupled fibre laser array.
Electron Lett,
2008, 44: 1238-1239
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Coherent combining of two pulsed fibre lasers in phase modulated mutually coupled fibre laser array&author=Zhou P&author=Wang X&author=Chen Z&publication_year=2008&journal=Electron Lett&volume=44&pages=1238-1239
[267]
Ma
P,
Zhou
P,
Wang
X.
Influence of perturbative phase noise on active coherent polarization beam combining system.
Opt Express,
2013, 21: 29666-29678
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Influence of perturbative phase noise on active coherent polarization beam combining system&author=Ma P&author=Zhou P&author=Wang X&publication_year=2013&journal=Opt Express&volume=21&pages=29666-29678
[268]
Ma
P,
Wang
X,
Ma
Y.
Analysis of multi-wavelength active coherent polarization beam combining system.
Opt Express,
2014, 22: 16538-16551
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Analysis of multi-wavelength active coherent polarization beam combining system&author=Ma P&author=Wang X&author=Ma Y&publication_year=2014&journal=Opt Express&volume=22&pages=16538-16551
[269]
Ma
P,
Lü
Y,
Zhou
P.
Investigation of the influence of mode-mismatch errors on active coherent polarization beam combining system.
Opt Express,
2014, 22: 27321-27338
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Investigation of the influence of mode-mismatch errors on active coherent polarization beam combining system&author=Ma P&author=Lü Y&author=Zhou P&publication_year=2014&journal=Opt Express&volume=22&pages=27321-27338
[270]
Ma
P F,
Zhou
P,
Ma
Y X.
Coherent Polarization Beam Combining of Four High-Power Fiber Amplifiers Using Single-Frequency Dithering Technique.
IEEE Photon Technol Lett,
2012, 24: 1024-1026
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Coherent Polarization Beam Combining of Four High-Power Fiber Amplifiers Using Single-Frequency Dithering Technique&author=Ma P F&author=Zhou P&author=Ma Y X&publication_year=2012&journal=IEEE Photon Technol Lett&volume=24&pages=1024-1026
[271]
Ma
P,
Zhou
P,
Xiao
H.
Generation of a 481-W Single Frequency and Linearly Polarized Beam by Coherent Polarization Locking.
IEEE Photon Technol Lett,
2013, 25: 1936-1938
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Generation of a 481-W Single Frequency and Linearly Polarized Beam by Coherent Polarization Locking&author=Ma P&author=Zhou P&author=Xiao H&publication_year=2013&journal=IEEE Photon Technol Lett&volume=25&pages=1936-1938
[272]
Ma
P,
Zhou
P,
Wang
X.
Coherent polarization beam combining of four 200-W-level fiber amplifiers.
Appl Phys Express,
2014, 7: 022703
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Coherent polarization beam combining of four 200-W-level fiber amplifiers&author=Ma P&author=Zhou P&author=Wang X&publication_year=2014&journal=Appl Phys Express&volume=7&pages=022703
[273]
Liu
Z,
Zhou
P,
Ma
P.
5 kW level laser generation by coherent polarization beam combining of four high-powernarrow-linewidth linearly-polarized fiber amplifiers.
Chin J Laser,
2017, 44: 0415001-415004
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=5 kW level laser generation by coherent polarization beam combining of four high-powernarrow-linewidth linearly-polarized fiber amplifiers&author=Liu Z&author=Zhou P&author=Ma P&publication_year=2017&journal=Chin J Laser&volume=44&pages=0415001-415004
[274]
Bochove E J, Ray W, Durville F, et al. A linear model for passive coherent combining a large number of fiber lasers. In: Proceedings of Advances in Optical Materials. Washington: Optical Society of America, 2012. JTh2A-19.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bochove E J, Ray W, Durville F, et al. A linear model for passive coherent combining a large number of fiber lasers. In: Proceedings of Advances in Optical Materials. Washington: Optical Society of America, 2012. JTh2A-19&
[275]
Shamir Y, Zuitlin R, Sintov Y, et al. 3kW-level incoherent and coherent mode combining via all-fiber fused Y-couplers. In: Proceedings of Frontiers in Optics. Washington: Optical Society of America, 2012. FW6C-1.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shamir Y, Zuitlin R, Sintov Y, et al. 3kW-level incoherent and coherent mode combining via all-fiber fused Y-couplers. In: Proceedings of Frontiers in Optics. Washington: Optical Society of America, 2012. FW6C-1&
[276]
Redmond
S M,
Ripin
D J,
Yu
C X.
Diffractive coherent combining of a 25 kW fiber laser array into a 19 kW Gaussian beam.
Opt Lett,
2012, 37: 2832-2834
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Diffractive coherent combining of a 25 kW fiber laser array into a 19 kW Gaussian beam&author=Redmond S M&author=Ripin D J&author=Yu C X&publication_year=2012&journal=Opt Lett&volume=37&pages=2832-2834
[277]
Yu
H L,
Zhang
Z X,
Wang
X L.
High average power coherent femtosecond pulse combining system based on an all fiber active control method.
Laser Phys Lett,
2018, 15: 075101
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=High average power coherent femtosecond pulse combining system based on an all fiber active control method&author=Yu H L&author=Zhang Z X&author=Wang X L&publication_year=2018&journal=Laser Phys Lett&volume=15&pages=075101
[278]
Kienel
M,
Müller
M,
Klenke
A.
12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition.
Opt Lett,
2016, 41: 3343-3346
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition&author=Kienel M&author=Müller M&author=Klenke A&publication_year=2016&journal=Opt Lett&volume=41&pages=3343-3346
[279]
Müller
M,
Kienel
M,
Klenke
A.
1 kW 1 mJ eight-channel ultrafast fiber laser.
Opt Lett,
2016, 41: 3439-3442
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=1 kW 1 mJ eight-channel ultrafast fiber laser&author=Müller M&author=Kienel M&author=Klenke A&publication_year=2016&journal=Opt Lett&volume=41&pages=3439-3442
[280]
Müller M, Klenke A, Stark H, et al. High-energy 1.8 kW 16-channel ultrafast fiber laser system. In: Proceedings of SPIE, San Francisco, 2018. 1051208.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Müller M, Klenke A, Stark H, et al. High-energy 1.8 kW 16-channel ultrafast fiber laser system. In: Proceedings of SPIE, San Francisco, 2018. 1051208&
[281]
Zervas M N. Power scalability in high power fibre amplifiers. In: Proceedings of Conference on Lasers and Electro-Optics Europe $\&$ European Quantum Electronics Conference (CLEO/Europe-EQEC), 2017.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zervas M N. Power scalability in high power fibre amplifiers. In: Proceedings of Conference on Lasers and Electro-Optics Europe $\&$ European Quantum Electronics Conference (CLEO/Europe-EQEC), 2017&
[282]
Steinke M, Tünnermann H, Kuhn V, et al. Single-frequency fiber amplifiers for next-generation gravitational wave detectors. IEEE J Sel Top Quant Electron, 2018, 24: 1-13.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Steinke M, Tünnermann H, Kuhn V, et al. Single-frequency fiber amplifiers for next-generation gravitational wave detectors. IEEE J Sel Top Quant Electron, 2018, 24: 1-13&
[283]
Johnson
M C,
Brunton
S L,
Kundtz
N B.
Extremum-seeking control of the beam pattern of a reconfigurable holographic metamaterial antenna.
J Opt Soc Am A,
2016, 33: 59-68
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Extremum-seeking control of the beam pattern of a reconfigurable holographic metamaterial antenna&author=Johnson M C&author=Brunton S L&author=Kundtz N B&publication_year=2016&journal=J Opt Soc Am A&volume=33&pages=59-68
[284]
Fu
X,
Brunton
S L,
Nathan Kutz
J.
Classification of birefringence in mode-locked fiber lasers using machine learning and sparse representation.
Opt Express,
2014, 22: 8585-8597
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Classification of birefringence in mode-locked fiber lasers using machine learning and sparse representation&author=Fu X&author=Brunton S L&author=Nathan Kutz J&publication_year=2014&journal=Opt Express&volume=22&pages=8585-8597