This work was supported by National Natural Science Foundation of China (Grant Nos. U1713222, 61773378, 61421004, U1806204), Beijing Science and Technology Project (Grant No. Z181100003118006), and Youth Innovation Promotion Association CAS.
References
[1]
Jamisola R. Dynamics identification and control of an industrial robot. In: Proceedings of the 9th International Conference on Advanced Robotics, Kyongju, 1999. 749--754.
Google Scholarhttp://scholar.google.com/scholar_lookup?title=Jamisola R. Dynamics identification and control of an industrial robot. In: Proceedings of the 9th International Conference on Advanced Robotics, Kyongju, 1999. 749--754&
[2]
Hollerbach J, Khalil W, Gautier M. Model identification. In: Springer Handbook of Robotics. Berlin: Springer, 2016. 113--138.
Google Scholarhttp://scholar.google.com/scholar_lookup?title=Hollerbach J, Khalil W, Gautier M. Model identification. In: Springer Handbook of Robotics. Berlin: Springer, 2016. 113--138&
[3]
van Damme M, Beyl P, Vanderborght B, et al. Estimating robot end-effector force from noisy actuator torque measurements. In: Proceedings of 2011 IEEE International Conference Robotics and Automation, Shanghai, 2011. 1108--1113.
Google Scholarhttp://scholar.google.com/scholar_lookup?title=van Damme M, Beyl P, Vanderborght B, et al. Estimating robot end-effector force from noisy actuator torque measurements. In: Proceedings of 2011 IEEE International Conference Robotics and Automation, Shanghai, 2011. 1108--1113&
[4]
Richalet J, Fiani P. The global approach in identification protocol optimization. In: Proceedings of International Conference on Control Applications, Albany, 1995. 423--431.
Google Scholarhttp://scholar.google.com/scholar_lookup?title=Richalet J, Fiani P. The global approach in identification protocol optimization. In: Proceedings of International Conference on Control Applications, Albany, 1995. 423--431&
[5]
Gautier
M,
Janot
A,
Vandanjon
P O.
A New Closed-Loop Output Error Method for Parameter Identification of Robot Dynamics.
IEEE Trans Contr Syst Technol,
2013, 21: 428-444
CrossRefGoogle Scholarhttp://scholar.google.com/scholar_lookup?title=A New Closed-Loop Output Error Method for Parameter Identification of Robot Dynamics&author=Gautier M&author=Janot A&author=Vandanjon P O&publication_year=2013&journal=IEEE Trans Contr Syst Technol&volume=21&pages=428-444
[6]
Janot
A,
Vandanjon
P O,
Gautier
M.
A Generic Instrumental Variable Approach for Industrial Robot Identification.
IEEE Trans Contr Syst Technol,
2014, 22: 132-145
CrossRefGoogle Scholarhttp://scholar.google.com/scholar_lookup?title=A Generic Instrumental Variable Approach for Industrial Robot Identification&author=Janot A&author=Vandanjon P O&author=Gautier M&publication_year=2014&journal=IEEE Trans Contr Syst Technol&volume=22&pages=132-145
[7]
Montazeri
A,
West
C,
Monk
S D.
Dynamic modelling and parameter estimation of a hydraulic robot manipulator using a multi-objective genetic algorithm.
Int J Control,
2017, 90: 661-683
CrossRefGoogle Scholarhttp://scholar.google.com/scholar_lookup?title=Dynamic modelling and parameter estimation of a hydraulic robot manipulator using a multi-objective genetic algorithm&author=Montazeri A&author=West C&author=Monk S D&publication_year=2017&journal=Int J Control&volume=90&pages=661-683
[8]
Wensing
P M,
Kim
S,
Slotine
J J E.
Linear Matrix Inequalities for Physically Consistent Inertial Parameter Identification: A Statistical Perspective on the Mass Distribution.
IEEE Robot Autom Lett,
2018, 3: 60-67
CrossRefGoogle Scholarhttp://scholar.google.com/scholar_lookup?title=Linear Matrix Inequalities for Physically Consistent Inertial Parameter Identification: A Statistical Perspective on the Mass Distribution&author=Wensing P M&author=Kim S&author=Slotine J J E&publication_year=2018&journal=IEEE Robot Autom Lett&volume=3&pages=60-67
[9]
Sousa
C D,
Cortes?o
R.
Physical feasibility of robot base inertial parameter identification: A linear matrix inequality approach.
Int J Robotics Res,
2014, 33: 931-944
CrossRefGoogle Scholarhttp://scholar.google.com/scholar_lookup?title=Physical feasibility of robot base inertial parameter identification: A linear matrix inequality approach&author=Sousa C D&author=Cortes?o R&publication_year=2014&journal=Int J Robotics Res&volume=33&pages=931-944
[10]
Welch G, Bishop G. An Introduction to the Kalman Filter. Chapel Hill, Technical Report. 1995.
Google Scholarhttp://scholar.google.com/scholar_lookup?title=Welch G, Bishop G. An Introduction to the Kalman Filter. Chapel Hill, Technical Report. 1995&
[11]
Gautier
M,
Poignet
P.
Extended Kalman filtering and weighted least squares dynamic identification of robot.
Control Eng Practice,
2001, 9: 1361-1372
CrossRefGoogle Scholarhttp://scholar.google.com/scholar_lookup?title=Extended Kalman filtering and weighted least squares dynamic identification of robot&author=Gautier M&author=Poignet P&publication_year=2001&journal=Control Eng Practice&volume=9&pages=1361-1372
[12]
Bona B, Indri M. Friction compensation in robotics: an overview. In: Proceedings of the 44th IEEE Conference Decision Control, Seville, 2005. 4360--4367.
Google Scholarhttp://scholar.google.com/scholar_lookup?title=Bona B, Indri M. Friction compensation in robotics: an overview. In: Proceedings of the 44th IEEE Conference Decision Control, Seville, 2005. 4360--4367&
[13]
Swevers
J,
Verdonck
W,
Schutter
J D.
Dynamic Model Identification for Industrial Robots.
IEEE Control Syst,
2007, 27: 58-71
CrossRefGoogle Scholarhttp://scholar.google.com/scholar_lookup?title=Dynamic Model Identification for Industrial Robots&author=Swevers J&author=Verdonck W&author=Schutter J D&publication_year=2007&journal=IEEE Control Syst&volume=27&pages=58-71
[14]
Ding
L,
Wu
H,
Yao
Y.
Dynamic Model Identification for 6-DOF Industrial Robots.
J Robotics,
2015, 2015: 1-9
CrossRefGoogle Scholarhttp://scholar.google.com/scholar_lookup?title=Dynamic Model Identification for 6-DOF Industrial Robots&author=Ding L&author=Wu H&author=Yao Y&publication_year=2015&journal=J Robotics&volume=2015&pages=1-9
[15]
Freidovich
L,
Robertsson
A,
Shiriaev
A.
LuGre-Model-Based Friction Compensation.
IEEE Trans Contr Syst Technol,
2010, 18: 194-200
CrossRefGoogle Scholarhttp://scholar.google.com/scholar_lookup?title=LuGre-Model-Based Friction Compensation&author=Freidovich L&author=Robertsson A&author=Shiriaev A&publication_year=2010&journal=IEEE Trans Contr Syst Technol&volume=18&pages=194-200
[16]
Astrom
K J,
Carlos
C C.
Revisiting the LuGre friction model.
IEEE Control Syst,
2008, 28: 101-114
CrossRefGoogle Scholarhttp://scholar.google.com/scholar_lookup?title=Revisiting the LuGre friction model&author=Astrom K J&author=Carlos C C&publication_year=2008&journal=IEEE Control Syst&volume=28&pages=101-114
[17]
Bompos N A, Artemiadis P K, Oikonomopoulos A S, et al. Modeling, full identification and control of the mitsubishi pa-10 robot arm. In: Proceedings of 2007 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Zurich, 2007. 1--6.
Google Scholarhttp://scholar.google.com/scholar_lookup?title=Bompos N A, Artemiadis P K, Oikonomopoulos A S, et al. Modeling, full identification and control of the mitsubishi pa-10 robot arm. In: Proceedings of 2007 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Zurich, 2007. 1--6&
[18]
Wernholt
E,
Gunnarsson
S.
NONLINEAR IDENTIFICATION OF A PHYSICALLY PARAMETERIZED ROBOT MODEL 1.
IFAC Proc Volumes,
2006, 39: 143-148
CrossRefGoogle Scholarhttp://scholar.google.com/scholar_lookup?title=NONLINEAR IDENTIFICATION OF A PHYSICALLY PARAMETERIZED ROBOT MODEL 1&author=Wernholt E&author=Gunnarsson S&publication_year=2006&journal=IFAC Proc Volumes&volume=39&pages=143-148
[19]
Grotjahn
M,
Daemi
M,
Heimann
B.
Friction and rigid body identification of robot dynamics.
Int J Solids Struct,
2001, 38: 1889-1902
CrossRefGoogle Scholarhttp://scholar.google.com/scholar_lookup?title=Friction and rigid body identification of robot dynamics&author=Grotjahn M&author=Daemi M&author=Heimann B&publication_year=2001&journal=Int J Solids Struct&volume=38&pages=1889-1902
[20]
Lee S D, Ahn K H, Song J B. Torque control based sensorless hand guiding for direct robot teaching. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, 2016. 745--750.
Google Scholarhttp://scholar.google.com/scholar_lookup?title=Lee S D, Ahn K H, Song J B. Torque control based sensorless hand guiding for direct robot teaching. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, 2016. 745--750&
[21]
Blumenkranz S J, Prisco G M, DiMaio S P, et al. US Patent, 9 895 813, 2018.
Google Scholarhttp://scholar.google.com/scholar_lookup?title=Blumenkranz S J, Prisco G M, DiMaio S P, et al. US Patent, 9 895 813, 2018&
[22]
Erden
M S,
Jonkman
J A.
PHYSICAL HUMAN-ROBOT INTERACTION BY OBSERVING ACTUATOR CURRENTS.
Int J Robotics Automation,
2012, 27: 233-243
CrossRefGoogle Scholarhttp://scholar.google.com/scholar_lookup?title=PHYSICAL HUMAN-ROBOT INTERACTION BY OBSERVING ACTUATOR CURRENTS&author=Erden M S&author=Jonkman J A&publication_year=2012&journal=Int J Robotics Automation&volume=27&pages=233-243
[23]
Nagamatsu Y, Shirai T, Suzuki H, et al. Distributed torque estimation toward low-latency variable stiffness control for gear-driven torque sensorless humanoid. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, 2017. 5239--5244.
Google Scholarhttp://scholar.google.com/scholar_lookup?title=Nagamatsu Y, Shirai T, Suzuki H, et al. Distributed torque estimation toward low-latency variable stiffness control for gear-driven torque sensorless humanoid. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, 2017. 5239--5244&
[24]
Vuong
N D,
Marcelo Jr.
A H,
Li
Y P.
Improved dynamic identification of robotic manipulators in the linear region of dynamic friction.
IFAC Proc Volumes,
2009, 42: 167-172
CrossRefGoogle Scholarhttp://scholar.google.com/scholar_lookup?title=Improved dynamic identification of robotic manipulators in the linear region of dynamic friction&author=Vuong N D&author=Marcelo Jr. A H&author=Li Y P&publication_year=2009&journal=IFAC Proc Volumes&volume=42&pages=167-172
[25]
Vuong N, Jr M. Dynamic model identification for industrial robots. Acta Polytech Hung, 2009, 6: 58--71.
Google Scholarhttp://scholar.google.com/scholar_lookup?title=Vuong N, Jr M. Dynamic model identification for industrial robots. Acta Polytech Hung, 2009, 6: 58--71&
[26]
Stürz
Y R,
Affolter
L M,
Smith
R S.
Parameter Identification of the KUKA LBR iiwa Robot Including Constraints on Physical Feasibility.
IFAC-PapersOnLine,
2017, 50: 6863-6868
CrossRefGoogle Scholarhttp://scholar.google.com/scholar_lookup?title=Parameter Identification of the KUKA LBR iiwa Robot Including Constraints on Physical Feasibility&author=Stürz Y R&author=Affolter L M&author=Smith R S&publication_year=2017&journal=IFAC-PapersOnLine&volume=50&pages=6863-6868
[27]
Duan
X J,
Zhi
J H,
Chen
H M.
Two novel robust adaptive parameter estimation methods with prescribed performance and relaxed PE condition.
Sci China Inf Sci,
2018, 61: 129203
CrossRefGoogle Scholarhttp://scholar.google.com/scholar_lookup?title=Two novel robust adaptive parameter estimation methods with prescribed performance and relaxed PE condition&author=Duan X J&author=Zhi J H&author=Chen H M&publication_year=2018&journal=Sci China Inf Sci&volume=61&pages=129203
[28]
Jahandideh H, Namvar M. Use of pso in parameter estimation of robot dynamics.
Google Scholarhttp://scholar.google.com/scholar_lookup?title=Jahandideh H, Namvar M. Use of pso in parameter estimation of robot dynamics&
[29]
Craig J. Introduction To Robotics: Mechanics And Control. 3rd ed. Upper Saddle River: Pearson Education, 2005. 165--200.
Google Scholarhttp://scholar.google.com/scholar_lookup?title=Craig J. Introduction To Robotics: Mechanics And Control. 3rd ed. Upper Saddle River: Pearson Education, 2005. 165--200&
[30]
Kammerer N, Garrec P. Dry friction modeling in dynamic identification for robot manipulators: theory and experiments. In: Proceedings of 2013 IEEE International Conference Mechatronics, Kagawa, 2013. 422--429.
Google Scholarhttp://scholar.google.com/scholar_lookup?title=Kammerer N, Garrec P. Dry friction modeling in dynamic identification for robot manipulators: theory and experiments. In: Proceedings of 2013 IEEE International Conference Mechatronics, Kagawa, 2013. 422--429&
[31]
Wu D W, Liu Q, Xu W J, et al. External force detection for physical human-robot interaction using dynamic model identification. In: Proceedings of International Conference on Intelligent Robotics and Applications, 2017. 581--592.
Google Scholarhttp://scholar.google.com/scholar_lookup?title=Wu D W, Liu Q, Xu W J, et al. External force detection for physical human-robot interaction using dynamic model identification. In: Proceedings of International Conference on Intelligent Robotics and Applications, 2017. 581--592&
[32]
Wang
X M,
He
X K,
Bao
Y.
Parameter estimates of Heston stochastic volatility model with MLE and consistent EKF algorithm.
Sci China Inf Sci,
2018, 61: 042202
CrossRefGoogle Scholarhttp://scholar.google.com/scholar_lookup?title=Parameter estimates of Heston stochastic volatility model with MLE and consistent EKF algorithm&author=Wang X M&author=He X K&author=Bao Y&publication_year=2018&journal=Sci China Inf Sci&volume=61&pages=042202
[33]
Janot
A,
Vandanjon
P O,
Gautier
M.
Identification of 6 DOF Rigid Industrial Robots with the Instrumental Variable Method.
IFAC Proc Volumes,
2012, 45: 1659-1664
CrossRefGoogle Scholarhttp://scholar.google.com/scholar_lookup?title=Identification of 6 DOF Rigid Industrial Robots with the Instrumental Variable Method&author=Janot A&author=Vandanjon P O&author=Gautier M&publication_year=2012&journal=IFAC Proc Volumes&volume=45&pages=1659-1664
[34]
Sousa C D, Cortes ao R. Physically feasible dynamic parameter identification of the 7-DOF WAM robot. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, 2013. 2868--2873.
Google Scholarhttp://scholar.google.com/scholar_lookup?title=Sousa C D, Cortes ao R. Physically feasible dynamic parameter identification of the 7-DOF WAM robot. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, 2013. 2868--2873&
[35]
Marino I P, Miquez J. Gradient-descent methods for parameter estimation in chaotic systems. In: Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, Zagreb, 2005. 440--445.
Google Scholarhttp://scholar.google.com/scholar_lookup?title=Marino I P, Miquez J. Gradient-descent methods for parameter estimation in chaotic systems. In: Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, Zagreb, 2005. 440--445&
[36]
Reeves C R. Genetic Algorithms. Boston: Springer, 2010. 109--139.
Google Scholarhttp://scholar.google.com/scholar_lookup?title=Reeves C R. Genetic Algorithms. Boston: Springer, 2010. 109--139&
[37]
Candy J V. Bayesian Signal Processing: Classical, Modern, and Particle Filtering Methods. Hoboken: John Wiley Sons, 2009. 237--293.
Google Scholarhttp://scholar.google.com/scholar_lookup?title=Candy J V. Bayesian Signal Processing: Classical, Modern, and Particle Filtering Methods. Hoboken: John Wiley Sons, 2009. 237--293&
[38]
Wu
J,
Wang
J,
You
Z.
An overview of dynamic parameter identification of robots.
Robotics Comput-Integrated Manufacturing,
2010, 26: 414-419
CrossRefGoogle Scholarhttp://scholar.google.com/scholar_lookup?title=An overview of dynamic parameter identification of robots&author=Wu J&author=Wang J&author=You Z&publication_year=2010&journal=Robotics Comput-Integrated Manufacturing&volume=26&pages=414-419
[39]
Sun Y, Hollerbach J M. Observability index selection for robot calibration. In: Proceedings of 2008 IEEE International Conference on Robotics and Automation, London, 2008. 831--836.
Google Scholarhttp://scholar.google.com/scholar_lookup?title=Sun Y, Hollerbach J M. Observability index selection for robot calibration. In: Proceedings of 2008 IEEE International Conference on Robotics and Automation, London, 2008. 831--836&
[40]
Bargsten V, Zometa P, Findeisen R. Modeling, parameter identification and model-based control of a lightweight robotic manipulator. In: Proceedings of 2013 IEEE International Conference on Control Applications (CCA), Hyderabad, 2013. 134--139.
Google Scholarhttp://scholar.google.com/scholar_lookup?title=Bargsten V, Zometa P, Findeisen R. Modeling, parameter identification and model-based control of a lightweight robotic manipulator. In: Proceedings of 2013 IEEE International Conference on Control Applications (CCA), Hyderabad, 2013. 134--139&
[41]
Calafiore G, Indri M, Bona B. Robot dynamic calibration: Optimal excitation trajectories and experimental parameter estimation. J Robotic Syst200118.
Google Scholarhttp://scholar.google.com/scholar_lookup?title=Calafiore G, Indri M, Bona B. Robot dynamic calibration: Optimal excitation trajectories and experimental parameter estimation. J Robotic Syst200118&
[42]
Swevers
J,
Ganseman
C,
Tukel
D B.
Optimal robot excitation and identification.
IEEE Trans Robot Automat,
1997, 13: 730-740
CrossRefGoogle Scholarhttp://scholar.google.com/scholar_lookup?title=Optimal robot excitation and identification&author=Swevers J&author=Ganseman C&author=Tukel D B&publication_year=1997&journal=IEEE Trans Robot Automat&volume=13&pages=730-740
[43]
Presse C, Gautier M. New criteria of exciting trajectories for robot identification. In: Proceedings of 1993 IEEE International Conference on Robotics and Automation, Atlanta, 1993. 907--912.
Google Scholarhttp://scholar.google.com/scholar_lookup?title=Presse C, Gautier M. New criteria of exciting trajectories for robot identification. In: Proceedings of 1993 IEEE International Conference on Robotics and Automation, Atlanta, 1993. 907--912&
[44]
Liu
J C,
Wu
Z X,
Yu
J Z.
Sliding mode fuzzy control-based path-following control for a dolphin robot.
Sci China Inf Sci,
2018, 61: 024201
CrossRefGoogle Scholarhttp://scholar.google.com/scholar_lookup?title=Sliding mode fuzzy control-based path-following control for a dolphin robot&author=Liu J C&author=Wu Z X&author=Yu J Z&publication_year=2018&journal=Sci China Inf Sci&volume=61&pages=024201