SCIENCE CHINA Information Sciences, Volume 64 , Issue 1 : 119201(2021) https://doi.org/10.1007/s11432-018-9725-1

A local observability analysis method for a time-varying nonlinear system and its application in the continuous self-calibration system

More info
  • ReceivedJul 22, 2018
  • AcceptedDec 12, 2018
  • PublishedMar 11, 2020


There is no abstract available for this article.


The work was supported by National Natural Science Foundation of China (Grant No. 61503392), Natural Science Foundation of Shaanxi Province (Grant No. 2015JQ6213), Aeronautical Science Foundation of China (Grant No. 201501U8001), and Aerospace Innovation Foundation of China (Grant No. 2015CASC187).


Appendix A.


[1] Goshen-Meskin D, Bar-Itzhack I Y. Observability analysis of piece-wise constant systems. I. Theory. IEEE Trans Aerosp Electron Syst, 1992, 28: 1056-1067 CrossRef ADS Google Scholar

[2] Chen Z. Local observability and its application to multiple measurement estimation. IEEE Trans Ind Electron, 1991, 38: 491-496 CrossRef Google Scholar

[3] Bartosiewicz Z. Local observability of nonlinear positive continuous-time systems. Automatica, 2017, 78: 135-138 CrossRef Google Scholar

[4] Bellizzi G. A New Formulation for the Radiation Operator: Application to the Fast Computation of the Singular Value Decomposition. IEEE Trans Antennas Propagat, 2016, 64: 3478-3486 CrossRef ADS Google Scholar

[5] Andrew D J. Continuous calibration and alignment techniques for an all-attitude inertial platform. In: Proceedings of AIAA Guidance and Control Conference, Key Biscayne, 1973. 20--22. Google Scholar

  • Table 1  

    Table 1Simulation results

    Error coefficientsRelative observable degreesConvergence time (s)Relative error (%)
    Scheme 10.6252$-$0.0050
    ${k_g}_{13y}$Scheme 20.47500.0042
    Scheme 31.4436$-$0.0021
    Scheme 10.0016480$-$8.88
    ${\Delta~_{sx}}$Scheme 20.51320$-$3.96
    Scheme 30.31280$-$6.03
    Scheme 1$2.2~\times~{10^{~-~6}}$500$-$11.21
    ${k_a}_{0z}$Scheme 20.000552702.94
    Scheme 30.0014200$-$1.58
    Scheme 2${k_g}_{11y}$71.731200.0016
    Scheme 3${\Delta~_{sy}}$0.581800.11