SCIENCE CHINA Information Sciences, Volume 62 , Issue 5 : 050203(2019) https://doi.org/10.1007/s11432-018-9606-6

A glove-based system for object recognition via visual-tactile fusion

More info
  • ReceivedAug 15, 2018
  • AcceptedSep 13, 2018
  • PublishedFeb 25, 2019


There is no abstract available for this article.


This work was supported by National Natural Science Foundation of China (Grant Nos. 61503212, 61703284, U1613212), in part by National Science Foundation of China and the German Research Foundation in Project Cross Modal Learning, NSFC 61621136008/DFG TRR-169.


[1] Lacey S, Campbell C, Sathian K. Vision and touch: multiple or multisensory representations of objects?. Perception, 2007, 36: 1513-1521 CrossRef PubMed Google Scholar

[2] Chitta S, Sturm J, Piccoli M. Tactile Sensing for Mobile Manipulation. IEEE Trans Robot, 2011, 27: 558-568 CrossRef Google Scholar

[3] Schmitz A, Bansho Y, Noda K, et al. Tactile object recognition using deep learning and dropout. In: Proceedings of IEEE-RAS International Conference on Humanoid Robots, 2014. 1044--1050. Google Scholar

[4] Liu H, Guo D, Sun F. Object Recognition Using Tactile Measurements: Kernel Sparse Coding Methods. IEEE Trans Instrum Meas, 2016, 65: 656-665 CrossRef Google Scholar

[5] Woods A T, Newell F N. Visual, haptic and cross-modal recognition of objects and scenes.. J Physiol-Paris, 2004, 98: 147-159 CrossRef PubMed Google Scholar

[6] Gao Y, Hendricks L A, Kuchenbecker K J. Deep learning for tactile understanding from visual and haptic data. 2015,. arXiv Google Scholar

[7] Güler P, Bekiroglu Y, Gratal X. What's in the container? Classifying object contents from vision and touch. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014. 3961--3968. Google Scholar

[8] Liu H, Wu Y, Sun F. Weakly Paired Multimodal Fusion for Object Recognition. IEEE Trans Automat Sci Eng, 2018, 15: 784-795 CrossRef Google Scholar

[9] Zhang W, Sun F, Wu H. A framework for the fusion of visual and tactile modalities for improving robot perception. Sci China Inf Sci, 2017, 60: 012201 CrossRef Google Scholar