References
[1]
You X H, Pan Z W, Gao X Q, et al. The 5G mobile communication: the development trends and its emerging key techniques (in Chinese). Sci Sin Inform, 2014, 44: 551--563.
Google Scholar
http://scholar.google.com/scholar_lookup?title=You X H, Pan Z W, Gao X Q, et al. The 5G mobile communication: the development trends and its emerging key techniques (in Chinese). Sci Sin Inform, 2014, 44: 551--563&
[2]
Li
L,
Wang
D,
Niu
X.
mmWave communications for 5G: implementation challenges and advances.
Sci China Inf Sci,
2018, 61: 021301
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=mmWave communications for 5G: implementation challenges and advances&author=Li L&author=Wang D&author=Niu X&publication_year=2018&journal=Sci China Inf Sci&volume=61&pages=021301
[3]
Wang C X, Wu S B, Bai L, et al. Recent advances and future challenges for massive MIMO channel measurements and models. Sci China Inf Sci, 2016, 59: 021301.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang C X, Wu S B, Bai L, et al. Recent advances and future challenges for massive MIMO channel measurements and models. Sci China Inf Sci, 2016, 59: 021301&
[4]
Zhang
J,
Tang
P,
Tian
L.
6-100 GHz research progress and challenges from a channel perspective for fifth generation (5G) and future wireless communication.
Sci China Inf Sci,
2017, 60: 080301
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=6-100 GHz research progress and challenges from a channel perspective for fifth generation (5G) and future wireless communication&author=Zhang J&author=Tang P&author=Tian L&publication_year=2017&journal=Sci China Inf Sci&volume=60&pages=080301
[5]
Tao
X,
Han
Y,
Xu
X.
Recent advances and future challenges for mobile network virtualization.
Sci China Inf Sci,
2017, 60: 040301
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Recent advances and future challenges for mobile network virtualization&author=Tao X&author=Han Y&author=Xu X&publication_year=2017&journal=Sci China Inf Sci&volume=60&pages=040301
[6]
Way forward on the overall 5G-NR eMBB. Workplan RP-170741. 2017. ftp://ftp.3gpp.org/TSG RAN/TSG RAN/TSGR 75/Docs/RP-170741.zip.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Way forward on the overall 5G-NR eMBB. Workplan RP-170741. 2017. ftp://ftp.3gpp.org/TSG RAN/TSG RAN/TSGR 75/Docs/RP-170741.zip&
[7]
Study on new radio access technology: radio access architecture and interfaces (release 14). TR38.801, v14.0. 2017. http://www.3gpp.org/ftp/Specs/archive/38 series/38.801/38801-e00.zip.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Study on new radio access technology: radio access architecture and interfaces (release 14). TR38.801, v14.0. 2017. http://www.3gpp.org/ftp/Specs/archive/38 series/38.801/38801-e00.zip&
[8]
ITU-R. Minimum requirements related to technical performance for IMT2020 radio interface(s). Report ITU-R M.2410-0. 2017. https://www.itu.int/pub/R-REP-M.2410-2017.
Google Scholar
http://scholar.google.com/scholar_lookup?title=ITU-R. Minimum requirements related to technical performance for IMT2020 radio interface(s). Report ITU-R M.2410-0. 2017. https://www.itu.int/pub/R-REP-M.2410-2017&
[9]
LTE Enhancements and 5G Normative Work. Release-15. 2018. http://www.3gpp.org/release-15.
Google Scholar
http://scholar.google.com/scholar_lookup?title=LTE Enhancements and 5G Normative Work. Release-15. 2018. http://www.3gpp.org/release-15&
[10]
You
X H,
Wang
D M,
Sheng
B.
Cooperative distributed antenna systems for mobile communications [Coordinated and Distributed MIMO.
IEEE Wireless Commun,
2010, 17: 35-43
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cooperative distributed antenna systems for mobile communications [Coordinated and Distributed MIMO&author=You X H&author=Wang D M&author=Sheng B&publication_year=2010&journal=IEEE Wireless Commun&volume=17&pages=35-43
[11]
Yang
W,
Wang
M,
Zhang
J.
Narrowband Wireless Access for Low-Power Massive Internet of Things: A Bandwidth Perspective.
IEEE Wireless Commun,
2017, 24: 138-145
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Narrowband Wireless Access for Low-Power Massive Internet of Things: A Bandwidth Perspective&author=Yang W&author=Wang M&author=Zhang J&publication_year=2017&journal=IEEE Wireless Commun&volume=24&pages=138-145
[12]
ITU-T. LS/o on the results of the 1st meeting of the ITU-T focus group on ma- chine learning for future networks including 5G (FG ML5G). FG ML5G-0-004. 2018. http://www.3gpp.org/ftp/tsg sa/WG1 Serv/TSGS1 82 Dubrovnik/Docs/S1-181271.zip.
Google Scholar
http://scholar.google.com/scholar_lookup?title=ITU-T. LS/o on the results of the 1st meeting of the ITU-T focus group on ma- chine learning for future networks including 5G (FG ML5G). FG ML5G-0-004. 2018. http://www.3gpp.org/ftp/tsg sa/WG1 Serv/TSGS1 82 Dubrovnik/Docs/S1-181271.zip&
[13]
5G system network data analytics services stage 3. TS 29.520 (CT3). 2018. http://www.etsi.org/deliver/etsi ts/129500 129599/129520/15.00.00 60/ts 129520v150000p.pdf.
Google Scholar
http://scholar.google.com/scholar_lookup?title=5G system network data analytics services stage 3. TS 29.520 (CT3). 2018. http://www.etsi.org/deliver/etsi ts/129500 129599/129520/15.00.00 60/ts 129520v150000p.pdf&
[14]
Whitley D. A genetic algorithm tutorial. Stat Comput, 1994, 4: 65--85.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Whitley D. A genetic algorithm tutorial. Stat Comput, 1994, 4: 65--85&
[15]
Schmidhuber
J.
Deep learning in neural networks: an overview..
Neural Networks,
2015, 61: 85-117
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deep learning in neural networks: an overview.&author=Schmidhuber J&publication_year=2015&journal=Neural Networks&volume=61&pages=85-117
[16]
Xiao-Hu Yu
,
Guo-An Chen
,
Shi-Xin Cheng
.
Dynamic learning rate optimization of the backpropagation algorithm..
IEEE Trans Neural Netw,
1995, 6: 669-677
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dynamic learning rate optimization of the backpropagation algorithm.&author=Xiao-Hu Yu &author=Guo-An Chen &author=Shi-Xin Cheng &publication_year=1995&journal=IEEE Trans Neural Netw&volume=6&pages=669-677
[17]
Yu
X H.
Can backpropagation error surface not have local minima..
IEEE Trans Neural Netw,
1992, 3: 1019-1021
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Can backpropagation error surface not have local minima.&author=Yu X H&publication_year=1992&journal=IEEE Trans Neural Netw&volume=3&pages=1019-1021
[18]
Yu
X H,
Chen
G A.
Efficient Backpropagation Learning Using Optimal Learning Rate and Momentum.
Neural Networks,
1997, 10: 517-527
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Efficient Backpropagation Learning Using Optimal Learning Rate and Momentum&author=Yu X H&author=Chen G A&publication_year=1997&journal=Neural Networks&volume=10&pages=517-527
[19]
Kaelbling
L P,
Littman
M L,
Moore
A W.
Reinforcement Learning: A Survey.
jair,
1996, 4: 237-285
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Reinforcement Learning: A Survey&author=Kaelbling L P&author=Littman M L&author=Moore A W&publication_year=1996&journal=jair&volume=4&pages=237-285
[20]
Watkins C J C H, Dayan P. Q-learning. Mach Learn, 1992, 8: 279--292.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Watkins C J C H, Dayan P. Q-learning. Mach Learn, 1992, 8: 279--292&
[21]
Finn C, Abbeel P, Levine S. Model-agnostic meta-learning for fast adaptation of deep networks. 2017,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Finn C, Abbeel P, Levine S. Model-agnostic meta-learning for fast adaptation of deep networks. 2017,&
[22]
Wu
J,
Gao
B B,
Wei
X S.
Resource-constrained deep learning: challenges and practices.
Sci Sin-Inf,
2018, 48: 501-510
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Resource-constrained deep learning: challenges and practices&author=Wu J&author=Gao B B&author=Wei X S&publication_year=2018&journal=Sci Sin-Inf&volume=48&pages=501-510
[23]
Zhou Z H. Machine learning: recent progress in China and beyond. China Sci Rev, 2018, 5: 20.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhou Z H. Machine learning: recent progress in China and beyond. China Sci Rev, 2018, 5: 20&
[24]
Zhong
Y X.
Artificial intelligence: Concept, approach and opportunity.
Chin Sci Bull,
2017, 62: 2473-2479
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Artificial intelligence: Concept, approach and opportunity&author=Zhong Y X&publication_year=2017&journal=Chin Sci Bull&volume=62&pages=2473-2479
[25]
Gatherer A. Machine learning modems: how ML will change how we specify and design next generation communication systems. IEEE ComSoc Tech News, 2018. https://www.comsoc.org/ctn/machine-learning-modems-how-ml-will-change-how-we-specify-and-design-next-generation.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gatherer A. Machine learning modems: how ML will change how we specify and design next generation communication systems. IEEE ComSoc Tech News, 2018. https://www.comsoc.org/ctn/machine-learning-modems-how-ml-will-change-how-we-specify-and-design-next-generation&
[26]
Yang C, Xu W H, Zhang Z C, et al. A channel-blind detection for SCMA based on image processing techniques. In: Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS), 2018. 1--5.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yang C, Xu W H, Zhang Z C, et al. A channel-blind detection for SCMA based on image processing techniques. In: Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS), 2018. 1--5&
[27]
Zhang C, Xu W H. Neural networks: efficient implementations and applications. In: Proceedings of IEEE International Conference on ASIC (ASICON), 2017. 1029--1032.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang C, Xu W H. Neural networks: efficient implementations and applications. In: Proceedings of IEEE International Conference on ASIC (ASICON), 2017. 1029--1032&
[28]
Xu W H, You X H, Zhang C. Efficient deep convolutional neural networks accelerator without multiplication and retraining. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018. 1--5.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Xu W H, You X H, Zhang C. Efficient deep convolutional neural networks accelerator without multiplication and retraining. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018. 1--5&
[29]
Xu W H, Wang Z F, You X H, et al. Efficient fast convolution architectures for convolutional neural network. In: Proceedings of IEEE International Conference on ASIC (ASICON), 2017. 904--907.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Xu W H, Wang Z F, You X H, et al. Efficient fast convolution architectures for convolutional neural network. In: Proceedings of IEEE International Conference on ASIC (ASICON), 2017. 904--907&
[30]
Xu W H, Wu Z Z, Ueng Y L, et al. Improved polar decoder based on deep learning. In: Proceedings of IEEE International Workshop on Signal Processing Systems (SiPS), 2017. 1--6.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Xu W H, Wu Z Z, Ueng Y L, et al. Improved polar decoder based on deep learning. In: Proceedings of IEEE International Workshop on Signal Processing Systems (SiPS), 2017. 1--6&
[31]
Xu W H, Zhong Z W, Be'ery Y, et al. Joint neural network equalizer and decoder. In: Proceedings of IEEE International Symposium on Wireless Communication Systems (ISWCS), 2018. 1--6.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Xu W H, Zhong Z W, Be'ery Y, et al. Joint neural network equalizer and decoder. In: Proceedings of IEEE International Symposium on Wireless Communication Systems (ISWCS), 2018. 1--6&
[32]
Xu W H, Be'ery Y, You X H, et al. Polar decoding on sparse graphs with deep learning. In: Proceedings of Asilomar Conference on Signals, Systems, and Computers (Asilomar), 2018. 1--6.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Xu W H, Be'ery Y, You X H, et al. Polar decoding on sparse graphs with deep learning. In: Proceedings of Asilomar Conference on Signals, Systems, and Computers (Asilomar), 2018. 1--6&
[33]
Xu W H, You X H, Zhang C. Using Fermat number transform to accelerate convolutional neural network. In: Proceedings of IEEE International Conference on ASIC (ASICON), 2017. 1033--1036.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Xu W H, You X H, Zhang C. Using Fermat number transform to accelerate convolutional neural network. In: Proceedings of IEEE International Conference on ASIC (ASICON), 2017. 1033--1036&
[34]
Gao
X,
Jiang
B,
Li
X.
Statistical Eigenmode Transmission Over Jointly Correlated MIMO Channels.
IEEE Trans Inform Theor,
2009, 55: 3735-3750
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Statistical Eigenmode Transmission Over Jointly Correlated MIMO Channels&author=Gao X&author=Jiang B&author=Li X&publication_year=2009&journal=IEEE Trans Inform Theor&volume=55&pages=3735-3750
[35]
Wang
D,
Zhang
Y,
Wei
H.
An overview of transmission theory and techniques of large-scale antenna systems for 5G wireless communications.
Sci China Inf Sci,
2016, 59: 081301
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=An overview of transmission theory and techniques of large-scale antenna systems for 5G wireless communications&author=Wang D&author=Zhang Y&author=Wei H&publication_year=2016&journal=Sci China Inf Sci&volume=59&pages=081301
[36]
Gesbert
D,
Hanly
S,
Huang
H.
Multi-cell MIMO cooperative networks: A new look at interference.
IEEE J Sel Areas Commun,
2010, 28: 1380-1408
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multi-cell MIMO cooperative networks: A new look at interference&author=Gesbert D&author=Hanly S&author=Huang H&publication_year=2010&journal=IEEE J Sel Areas Commun&volume=28&pages=1380-1408
[37]
Jing S S, Yu A L, Liang X, et al. Uniform belief propagation processor for massive MIMO detection and GF (2$^{n}$) LDPC decoding. In: Proceedings of IEEE International Conference on ASIC (ASICON), 2017. 961--964.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Jing S S, Yu A L, Liang X, et al. Uniform belief propagation processor for massive MIMO detection and GF (2$^{n}$) LDPC decoding. In: Proceedings of IEEE International Conference on ASIC (ASICON), 2017. 961--964&
[38]
Gandhi V S, Maheswaran B. A cross layer design for performance enhancements in LTE-A system. In: Proceedings of IEEE International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), 2016. 905--909.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gandhi V S, Maheswaran B. A cross layer design for performance enhancements in LTE-A system. In: Proceedings of IEEE International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), 2016. 905--909&
[39]
Kuen J, Kong X F, Wang G, et al. DelugeNets: deep networks with efficient and flexible cross-layer information inflows. In: Proceedings of IEEE International Conference on Computer Vision Workshop (ICCVW), 2017. 958--966.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kuen J, Kong X F, Wang G, et al. DelugeNets: deep networks with efficient and flexible cross-layer information inflows. In: Proceedings of IEEE International Conference on Computer Vision Workshop (ICCVW), 2017. 958--966&
[40]
Farsad N, Rao M, Goldsmith A. Deep learning for joint source-channel coding of text. 2018,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Farsad N, Rao M, Goldsmith A. Deep learning for joint source-channel coding of text. 2018,&
[41]
Xu
X,
Ding
Y,
Hu
S X.
Scaling for edge inference of deep neural networks.
Nat Electron,
2018, 1: 216-222
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Scaling for edge inference of deep neural networks&author=Xu X&author=Ding Y&author=Hu S X&publication_year=2018&journal=Nat Electron&volume=1&pages=216-222
[42]
Wang
X,
Li
X,
Leung
V C M.
Artificial Intelligence-Based Techniques for Emerging Heterogeneous Network: State of the Arts, Opportunities, and Challenges.
IEEE Access,
2015, 3: 1379-1391
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Artificial Intelligence-Based Techniques for Emerging Heterogeneous Network: State of the Arts, Opportunities, and Challenges&author=Wang X&author=Li X&author=Leung V C M&publication_year=2015&journal=IEEE Access&volume=3&pages=1379-1391
[43]
Klaine
P V,
Imran
M A,
Onireti
O.
A Survey of Machine Learning Techniques Applied to Self-Organizing Cellular Networks.
IEEE Commun Surv Tutorials,
2017, 19: 2392-2431
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Survey of Machine Learning Techniques Applied to Self-Organizing Cellular Networks&author=Klaine P V&author=Imran M A&author=Onireti O&publication_year=2017&journal=IEEE Commun Surv Tutorials&volume=19&pages=2392-2431
[44]
Pèrez-Romero J, Sallent O, Ferrús R, et al. Knowledge-based 5G radio access network planning and optimization. In: Proceedings of IEEE International Symposium on Wireless Communication Systems (ISWCS), 2016. 359--365.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Pèrez-Romero J, Sallent O, Ferrús R, et al. Knowledge-based 5G radio access network planning and optimization. In: Proceedings of IEEE International Symposium on Wireless Communication Systems (ISWCS), 2016. 359--365&
[45]
Gomez-Andrades
A,
Munoz
P,
Serrano
I.
Automatic Root Cause Analysis for LTE Networks Based on Unsupervised Techniques.
IEEE Trans Veh Technol,
2016, 65: 2369-2386
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Automatic Root Cause Analysis for LTE Networks Based on Unsupervised Techniques&author=Gomez-Andrades A&author=Munoz P&author=Serrano I&publication_year=2016&journal=IEEE Trans Veh Technol&volume=65&pages=2369-2386
[46]
Wang
J,
Guan
W,
Huang
Y.
Distributed Optimization of Hierarchical Small Cell Networks: A GNEP Framework.
IEEE J Sel Areas Commun,
2017, 35: 249-264
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Distributed Optimization of Hierarchical Small Cell Networks: A GNEP Framework&author=Wang J&author=Guan W&author=Huang Y&publication_year=2017&journal=IEEE J Sel Areas Commun&volume=35&pages=249-264
[47]
Bogale T E, Wang X, Le L B. Machine intelligence techniques for next-generation context-aware wireless networks. 2018,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bogale T E, Wang X, Le L B. Machine intelligence techniques for next-generation context-aware wireless networks. 2018,&
[48]
Li
R,
Zhao
Z,
Zhou
X.
Intelligent 5G: When Cellular Networks Meet Artificial Intelligence.
IEEE Wireless Commun,
2017, 24: 175-183
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Intelligent 5G: When Cellular Networks Meet Artificial Intelligence&author=Li R&author=Zhao Z&author=Zhou X&publication_year=2017&journal=IEEE Wireless Commun&volume=24&pages=175-183
[49]
Zhao Z, Li R, Sun Q, et al. Deep reinforcement learning for network slicing. 2018,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhao Z, Li R, Sun Q, et al. Deep reinforcement learning for network slicing. 2018,&
[50]
Ren Y R, Zhang C, Liu X, et al. Efficient early termination schemes for belief-propagation decoding of polar codes. In: Proceedings of IEEE International Conference on ASIC (ASICON), 2015. 1--4.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ren Y R, Zhang C, Liu X, et al. Efficient early termination schemes for belief-propagation decoding of polar codes. In: Proceedings of IEEE International Conference on ASIC (ASICON), 2015. 1--4&
[51]
Fossorier
M P C,
Mihaljevic
M,
Imai
H.
Reduced complexity iterative decoding of low-density parity check codes based on belief propagation.
IEEE Trans Commun,
1999, 47: 673-680
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Reduced complexity iterative decoding of low-density parity check codes based on belief propagation&author=Fossorier M P C&author=Mihaljevic M&author=Imai H&publication_year=1999&journal=IEEE Trans Commun&volume=47&pages=673-680
[52]
Yang
J,
Song
W,
Zhang
S.
Low-Complexity Belief Propagation Detection for Correlated Large-Scale MIMO Systems.
J Sign Process Syst,
2018, 90: 585-599
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Low-Complexity Belief Propagation Detection for Correlated Large-Scale MIMO Systems&author=Yang J&author=Song W&author=Zhang S&publication_year=2018&journal=J Sign Process Syst&volume=90&pages=585-599
[53]
Liu L, Yuen C, Guan Y L, et al. Gaussian message passing iterative detection for MIMO-NOMA systems with massive access. In: Proceedings of IEEE Global Communications Conference (GLOBECOM), 2016. 1--6.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Liu L, Yuen C, Guan Y L, et al. Gaussian message passing iterative detection for MIMO-NOMA systems with massive access. In: Proceedings of IEEE Global Communications Conference (GLOBECOM), 2016. 1--6&
[54]
Yang J M, Zhang C, Zhou H Y, et al. Pipelined belief propagation polar decoders. In: Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS), 2016. 413--416.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yang J M, Zhang C, Zhou H Y, et al. Pipelined belief propagation polar decoders. In: Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS), 2016. 413--416&
[55]
Tan X S, Xu W H, Be'ery Y, et al. Improving massive MIMO belief propagation detector with deep neural network. 2018,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tan X S, Xu W H, Be'ery Y, et al. Improving massive MIMO belief propagation detector with deep neural network. 2018,&
[56]
Liang
F,
Shen
C,
Wu
F.
An Iterative BP-CNN Architecture for Channel Decoding.
IEEE J Sel Top Signal Process,
2018, 12: 144-159
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=An Iterative BP-CNN Architecture for Channel Decoding&author=Liang F&author=Shen C&author=Wu F&publication_year=2018&journal=IEEE J Sel Top Signal Process&volume=12&pages=144-159
[57]
Lv X Z, Wei P, Xiao X C. Automatic identification of digital modulation signals using high order cumulants. Electronic Warfare, 2004, 6: 1.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lv X Z, Wei P, Xiao X C. Automatic identification of digital modulation signals using high order cumulants. Electronic Warfare, 2004, 6: 1&
[58]
Wang
T,
Wen
C K,
Wang
H.
Deep learning for wireless physical layer: Opportunities and challenges.
China Commun,
2017, 14: 92-111
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deep learning for wireless physical layer: Opportunities and challenges&author=Wang T&author=Wen C K&author=Wang H&publication_year=2017&journal=China Commun&volume=14&pages=92-111
[59]
O'Shea
T,
Hoydis
J.
An Introduction to Deep Learning for the Physical Layer.
IEEE Trans Cogn Commun Netw,
2017, 3: 563-575
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=An Introduction to Deep Learning for the Physical Layer&author=O'Shea T&author=Hoydis J&publication_year=2017&journal=IEEE Trans Cogn Commun Netw&volume=3&pages=563-575
[60]
O'Shea T J, Erpek T, Clancy T C. Deep learning based MIMO communications. 2017,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=O'Shea T J, Erpek T, Clancy T C. Deep learning based MIMO communications. 2017,&