SCIENCE CHINA Information Sciences, Volume 62 , Issue 6 : 069404(2019) https://doi.org/10.1007/s11432-018-9561-9

Single-event upset prediction in static random access memory cell account for parameter variations

More info
  • ReceivedApr 25, 2018
  • AcceptedAug 21, 2018
  • PublishedFeb 26, 2019


There is no abstract available for this article.


This work was supported by National Natural Science Foundation of China (Grant Nos. 61704039, 61771167), Natural Science Foundation of Heilongjiang Province (Grant No. QC2017073), Science and Technology Innovation Foundation of Harbin (Grant No. 2016RAQXJ068), Fundamental Research Funds for the Central Universities (Grant No. HIT. NSRIF. 2018.09), and the “111 project" (Grant No. B18017).


[1] Asenov A, Kaya S, Brown A R. Intrinsic parameter fluctuations in decananometer mosfets introduced by gate line edge roughness. IEEE Trans Electron Devices, 2003, 50: 1254-1260 CrossRef ADS Google Scholar

[2] Balasubramanian A, Fleming P R, Bhuva B L. Effects of Random Dopant Fluctuations (RDF) on the Single Event Vulnerability of 90 and 65 nm CMOS Technologies. IEEE Trans Nucl Sci, 2007, 54: 2400-2406 CrossRef ADS Google Scholar

[3] Wang T Q, Xiao L Y, Zhou B. Analysis of process variations impact on the single-event transient quenching in 65 nm CMOS combinational circuits. Sci China Technol Sci, 2014, 57: 322-331 CrossRef Google Scholar

[4] Kauppila A V, Bhuva B L, Kauppila J S. Impact of Process Variations on SRAM Single Event Upsets. IEEE Trans Nucl Sci, 2011, 58: 834-839 CrossRef ADS Google Scholar

[5] Kauppila A V, Ball D R, Bhuva B L. Impact of Process Variations on Upset Reversal in a 65 nm Flip-Flop. IEEE Trans Nucl Sci, 2012, 59: 886-892 CrossRef ADS Google Scholar

[6] Tianqi W, Xiao L, Huo M. Single-Event Upset Prediction in SRAMs Account for On-Transistor Sensitive Volume. IEEE Trans Nucl Sci, 2015, 62: 3207-3215 CrossRef ADS Google Scholar

  • Figure 1

    (Color online) Simulation results. (a) SEU probabilities for PMOS charge collection in 65-nm SRAM; (b) SEU probabilities for NMOS charge collection in 65-nm SRAM; (c) comparison of SEU cross-section for the 65- and 45-nm SRAMs; (d) SEU cross-section range percentage for the 65- and 45-nm transistors; (e) SEU cross-section shifts induced by parameter variations in 65-nm simulations.