SCIENCE CHINA Information Sciences, Volume 62 , Issue 1 : 010201(2019) https://doi.org/10.1007/s11432-018-9548-5

Position tracking and attitude control for quadrotors via active disturbance rejection control method

More info
  • ReceivedJul 4, 2018
  • AcceptedJul 19, 2018
  • PublishedDec 19, 2018



This work was supported in part by Royal Society of the U.K., in part by Research Fund for the Taishan Scholar Project of Shandong Province of China, in part by National Natural Science Foundation of China (Grant No. 61503001), and in part by Alexander von Humboldt Foundation of Germany.


[1] Tousi M M, Khorasani K. Optimal hybrid fault recovery in a team of unmanned aerial vehicles. Automatica, 2012, 48: 410-418 CrossRef Google Scholar

[2] Gandolfo D C, Salinas L R, Brandao A. Stable Path-Following Control for a Quadrotor Helicopter Considering Energy Consumption. IEEE Trans Contr Syst Technol, 2017, 25: 1423-1430 CrossRef Google Scholar

[3] Cabecinhas D, Naldi R, Silvestre C. Robust Landing and Sliding Maneuver Hybrid Controller for a Quadrotor Vehicle. IEEE Trans Contr Syst Technol, 2016, 24: 400-412 CrossRef Google Scholar

[4] Loianno G, Brunner C, McGrath G. Estimation, Control, and Planning for Aggressive Flight With a Small Quadrotor With a Single Camera and IMU. IEEE Robot Autom Lett, 2017, 2: 404-411 CrossRef Google Scholar

[5] Dong X W. Formation and Containment Control for High-Order Linear Swarm Systems. Berlin: Springer, 2015. Google Scholar

[6] Liang X, Fang Y, Sun N. Nonlinear Hierarchical Control for Unmanned Quadrotor Transportation Systems. IEEE Trans Ind Electron, 2018, 65: 3395-3405 CrossRef Google Scholar

[7] Aguiar A P, Hespanha J P. Trajectory-Tracking and Path-Following of Underactuated Autonomous Vehicles With Parametric Modeling Uncertainty. IEEE Trans Automat Contr, 2007, 52: 1362-1379 CrossRef Google Scholar

[8] Cao N, Lynch A F. Inner-Outer Loop Control for Quadrotor UAVs With Input and State Constraints. IEEE Trans Contr Syst Technol, 2016, 24: 1797-1804 CrossRef Google Scholar

[9] Wang X, Shirinzadeh B, Ang M H. Nonlinear Double-Integral Observer and Application to Quadrotor Aircraft. IEEE Trans Ind Electron, 2015, 62: 1189-1200 CrossRef Google Scholar

[10] Yuan Y, Yuan H, Wang Z. Optimal control for networked control systems with disturbances: a delta operator approach. Let Control Theory Appl, 2017, 11: 1325-1332 CrossRef Google Scholar

[11] Yuan Y, Wang Z, Guo L. Event-Triggered Strategy Design for Discrete-Time Nonlinear Quadratic Games With Disturbance Compensations: The Noncooperative Case. IEEE Trans Syst Man Cybern Syst, 2018, 48: 1885-1896 CrossRef Google Scholar

[12] Leena N, Saju K K. Modelling and Trajectory Tracking of Wheeled Mobile Robots. Procedia Tech, 2016, 24: 538-545 CrossRef Google Scholar

[13] Sun W, Tang S, Gao H. Two Time-Scale Tracking Control of Nonholonomic Wheeled Mobile Robots. IEEE Trans Contr Syst Technol, 2016, 24: 2059-2069 CrossRef Google Scholar

[14] Xu B. Disturbance Observer-Based Dynamic Surface Control of Transport Aircraft With Continuous Heavy Cargo Airdrop. IEEE Trans Syst Man Cybern Syst, 2017, 47: 161-170 CrossRef Google Scholar

[15] Kim W, Shin D, Won D. Disturbance-Observer-Based Position Tracking Controller in the Presence of Biased Sinusoidal Disturbance for Electrohydraulic Actuators. IEEE Trans Contr Syst Technol, 2013, 21: 2290-2298 CrossRef Google Scholar

[16] Pereira P O, Cunha R, Cabecinhas D. Leader following trajectory planning: A trailer-like approach. Automatica, 2017, 75: 77-87 CrossRef Google Scholar

[17] Tayebi A, McGilvray S. Attitude stabilization of a VTOL quadrotor aircraft. IEEE Trans Contr Syst Technol, 2006, 14: 562-571 CrossRef Google Scholar

[18] Meng Z, Ren W, You Z. Distributed finite-time attitude containment control for multiple rigid bodies. Automatica, 2010, 46: 2092-2099 CrossRef Google Scholar

[19] Tian B, Liu L, Lu H. Multivariable Finite Time Attitude Control for Quadrotor UAV: Theory and Experimentation. IEEE Trans Ind Electron, 2018, 65: 2567-2577 CrossRef Google Scholar

[20] Shi X N, Zhang Y A, Zhou D. A geometric approach for quadrotor trajectory tracking control. Int J Control, 2015, 88: 2217-2227 CrossRef Google Scholar

[21] Liu H, Xi J, Zhong Y. Robust Attitude Stabilization for Nonlinear Quadrotor Systems With Uncertainties and Delays. IEEE Trans Ind Electron, 2017, 64: 5585-5594 CrossRef Google Scholar

[22] Xia Y, Liu B, Fu M. Active disturbance rejection control for power plant with a single loop. Asian J Control, 2012, 14: 239-250 CrossRef Google Scholar

[23] Han J. From PID to Active Disturbance Rejection Control. IEEE Trans Ind Electron, 2009, 56: 900-906 CrossRef Google Scholar

[24] Wu D, Chen K. Frequency-Domain Analysis of Nonlinear Active Disturbance Rejection Control via the Describing Function Method. IEEE Trans Ind Electron, 2013, 60: 3906-3914 CrossRef Google Scholar

[25] Guo B Z, Zhao Z L. On Convergence of the Nonlinear Active Disturbance Rejection Control for MIMO Systems. SIAM J Control Optim, 2013, 51: 1727-1757 CrossRef Google Scholar

[26] Chen S, Xue W, Zhong S. On comparison of modified ADRCs for nonlinear uncertain systems with time delay. Sci China Inf Sci, 2018, 61: 70223 CrossRef Google Scholar

[27] Bai W, Xue W, Huang Y. On extended state based Kalman filter design for a class of nonlinear time-varying uncertain systems. Sci China Inf Sci, 2018, 61: 042201 CrossRef Google Scholar

[28] Liu G P, Shi P, Han J. Active disturbance rejection control for uncertain multivariable systems with time-delay. IET Control Theor Appl, 2007, 1: 75-81 CrossRef Google Scholar

[29] Cabecinhas D, Cunha R, Silvestre C. Experimental validation of a globally stabilizing feedback controller for a quadrotor aircraft with wind disturbance rejection. In: Proceedings of American Control Conference, Washington, 2013.łinebreak 1024--1029. Google Scholar

[30] Yang H, Cheng L, Xia Y. Active Disturbance Rejection Attitude Control for a Dual Closed-Loop Quadrotor Under Gust Wind. IEEE Trans Contr Syst Technol, 2018, 26: 1400-1405 CrossRef Google Scholar

[31] Yuan Y, Wang Z, Zhang P. Nonfragile Near-Optimal Control of Stochastic Time-Varying Multiagent Systems With Control- and State-Dependent Noises.. IEEE Trans Cybern, 2018, : 1-13 CrossRef PubMed Google Scholar

[32] Yuan Y, Wang Z, Zhang P. Near-Optimal Resilient Control Strategy Design for State-Saturated Networked Systems Under Stochastic Communication Protocol.. IEEE Trans Cybern, 2018, : 1-13 CrossRef PubMed Google Scholar

[33] Liu J, Liu Q, Cao J. Adaptive event-triggered H filtering for T-S fuzzy system with time delay. Neurocomputing, 2016, 189: 86-94 CrossRef Google Scholar

[34] Liu J, Cao J, Wu Z. State estimation for complex systems with randomly occurring nonlinearities and randomly missing measurements. Int J Syst Sci, 2014, 45: 1364-1374 CrossRef Google Scholar

  • Figure 1

    (Color online) The schematic diagram of control.

  • Table 1   Parameters of the position controller
    Parameter Value Parameter Value
    $m_{1}$ $5.0$ $m_{2}$ $5.0$
    $n_{1}$ $0.5$ $n_{2}$ $0.5$
    $k_{1}$ $2.3$ $k_{2}$ $2.3$
    $l_{1}$ $7.5$ $l_{2}$ $7.6$
  • Table 2   Parameters of the attitude controller
    Parameter Roll Pitch Yaw
    $\gamma_{1}$ $1.4\times10^3$ $1.4\times10^3$ $1.3\times10^3$
    $\gamma_{2}$ $2.9\times10^4$ $3.0\times10^4$ $5.0\times10^3$
    $b_{0}$ $5.0\times10^2$ $5.0\times10^2$ $5.0\times10^2$
    $\eta_{1}$ $15.0$ $15.0$ $3.0$
    $p$ $1.0$ $1.0$ $10.0$
    $d$ $0.1$ $0.1$ $0.1$