References
[1]
Agrell
E,
Karlsson
M,
Chraplyvy
A R.
Roadmap of optical communications.
J Opt,
2016, 18: 063002
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Roadmap of optical communications&author=Agrell E&author=Karlsson M&author=Chraplyvy A R&publication_year=2016&journal=J Opt&volume=18&pages=063002
[2]
Tkach
R W.
Scaling optical communications for the next decade and beyond.
Bell Labs Tech J,
2010, 14: 3-9
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Scaling optical communications for the next decade and beyond&author=Tkach R W&publication_year=2010&journal=Bell Labs Tech J&volume=14&pages=3-9
[3]
Eldada L. Advances in ROADM technologies and subsystems. Proc SPIE, 2005, 5970: 611--620.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Eldada L. Advances in ROADM technologies and subsystems. Proc SPIE, 2005, 5970: 611--620&
[4]
Dong
P,
Chen
Y K,
Duan
G H.
Silicon photonic devices and integrated circuits.
Nanophotonics,
2014, 3: 215-228
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon photonic devices and integrated circuits&author=Dong P&author=Chen Y K&author=Duan G H&publication_year=2014&journal=Nanophotonics&volume=3&pages=215-228
[5]
Richardson
D J,
Fini
J M,
Nelson
L E.
Space-division multiplexing in optical fibres.
Nat Photonic,
2013, 7: 354-362
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Space-division multiplexing in optical fibres&author=Richardson D J&author=Fini J M&author=Nelson L E&publication_year=2013&journal=Nat Photonic&volume=7&pages=354-362
[6]
Winzer
P J.
Making spatial multiplexing a reality.
Nat Photonic,
2014, 8: 345-348
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Making spatial multiplexing a reality&author=Winzer P J&publication_year=2014&journal=Nat Photonic&volume=8&pages=345-348
[7]
van Uden
R G H,
Correa
R A,
Lopez
E A.
Ultra-high-density spatial division multiplexing with a few-mode multicore fibre.
Nat Photonic,
2014, 8: 865-870
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ultra-high-density spatial division multiplexing with a few-mode multicore fibre&author=van Uden R G H&author=Correa R A&author=Lopez E A&publication_year=2014&journal=Nat Photonic&volume=8&pages=865-870
[8]
Berdagué
S,
Facq
P.
Mode division multiplexing in optical fibers.
Appl Opt,
1982, 21: 1950-1955
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mode division multiplexing in optical fibers&author=Berdagué S&author=Facq P&publication_year=1982&journal=Appl Opt&volume=21&pages=1950-1955
[9]
Randel
S,
Ryf
R,
Sierra
A.
6$\times$56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6$\times$6 MIMO equalization.
Opt Express,
2011, 19: 16697-16707
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=6$\times$56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6$\times$6 MIMO equalization&author=Randel S&author=Ryf R&author=Sierra A&publication_year=2011&journal=Opt Express&volume=19&pages=16697-16707
[10]
Dai
D X,
Bowers
J E.
Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects.
Nanophotonics,
2014, 3: 283-311
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects&author=Dai D X&author=Bowers J E&publication_year=2014&journal=Nanophotonics&volume=3&pages=283-311
[11]
Doerr
C R,
Taunay
T F.
Silicon photonics core-, wavelength-, and polarization-diversity receiver.
IEEE Photonic Technol Lett,
2011, 23: 597-599
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon photonics core-, wavelength-, and polarization-diversity receiver&author=Doerr C R&author=Taunay T F&publication_year=2011&journal=IEEE Photonic Technol Lett&volume=23&pages=597-599
[12]
Dai D X, Bauters J, Bowers J E. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction. Light Sci Appl, 2012, 1: 500--505.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dai D X, Bauters J, Bowers J E. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction. Light Sci Appl, 2012, 1: 500--505&
[13]
Thomson
D,
Zilkie
A,
Bowers
J E.
Roadmap on silicon photonics.
J Opt,
2016, 18: 073003
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Roadmap on silicon photonics&author=Thomson D&author=Zilkie A&author=Bowers J E&publication_year=2016&journal=J Opt&volume=18&pages=073003
[14]
Soref
R.
The past, present, and future of silicon photonics.
IEEE J Sel Top Quant Electron,
2006, 12: 1678-1687
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=The past, present, and future of silicon photonics&author=Soref R&publication_year=2006&journal=IEEE J Sel Top Quant Electron&volume=12&pages=1678-1687
[15]
Jalali
B,
Fathpour
S.
Silicon photonics.
J Lightwave Technol,
2006, 24: 4600-4615
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon photonics&author=Jalali B&author=Fathpour S&publication_year=2006&journal=J Lightwave Technol&volume=24&pages=4600-4615
[16]
Kopp
C,
Bernabé
S,
Bakir
B B.
Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging.
IEEE J Sel Top Quant Electron,
2011, 17: 498-509
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging&author=Kopp C&author=Bernabé S&author=Bakir B B&publication_year=2011&journal=IEEE J Sel Top Quant Electron&volume=17&pages=498-509
[17]
Tsybeskov
L,
Lockwood
D J,
Ichikawa
M.
Silicon photonics: CMOS going optical [scanning the issue].
Proc IEEE,
2009, 97: 1161-1165
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon photonics: CMOS going optical [scanning the issue]&author=Tsybeskov L&author=Lockwood D J&author=Ichikawa M&publication_year=2009&journal=Proc IEEE&volume=97&pages=1161-1165
[18]
Hochberg
M,
Baehr-Jones
T.
Towards fabless silicon photonics.
Nat Photonic,
2010, 4: 492-494
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Towards fabless silicon photonics&author=Hochberg M&author=Baehr-Jones T&publication_year=2010&journal=Nat Photonic&volume=4&pages=492-494
[19]
Lim
A E J,
Song
J F,
Fang
Q.
Review of silicon photonics foundry efforts.
IEEE J Sel Top Quant Electron,
2014, 20: 405-416
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Review of silicon photonics foundry efforts&author=Lim A E J&author=Song J F&author=Fang Q&publication_year=2014&journal=IEEE J Sel Top Quant Electron&volume=20&pages=405-416
[20]
Streshinsky
M,
Ding
R,
Liu
Y.
The road to affordable, large-scale silicon photonics.
Opt Photonic News,
2013, 24: 32
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The road to affordable, large-scale silicon photonics&author=Streshinsky M&author=Ding R&author=Liu Y&publication_year=2013&journal=Opt Photonic News&volume=24&pages=32
[21]
Dumon
P,
Bogaerts
W,
Wiaux
V.
Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography.
IEEE Photonic Technol Lett,
2004, 16: 1328-1330
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography&author=Dumon P&author=Bogaerts W&author=Wiaux V&publication_year=2004&journal=IEEE Photonic Technol Lett&volume=16&pages=1328-1330
[22]
Selvaraja
S K,
Jaenen
P,
Bogaerts
W.
Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography.
J Lightwave Technol,
2009, 27: 4076-4083
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography&author=Selvaraja S K&author=Jaenen P&author=Bogaerts W&publication_year=2009&journal=J Lightwave Technol&volume=27&pages=4076-4083
[23]
Bogaerts
W,
Selvaraja
S K,
Dumon
P.
Silicon-on-insulator spectral filters fabricated with CMOS technology.
IEEE J Sel Top Quant Electron,
2010, 16: 33-44
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon-on-insulator spectral filters fabricated with CMOS technology&author=Bogaerts W&author=Selvaraja S K&author=Dumon P&publication_year=2010&journal=IEEE J Sel Top Quant Electron&volume=16&pages=33-44
[24]
Bogaerts
W,
Taillaert
D,
Dumon
P.
A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires.
Opt Express,
2007, 15: 1567-1578
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires&author=Bogaerts W&author=Taillaert D&author=Dumon P&publication_year=2007&journal=Opt Express&volume=15&pages=1567-1578
[25]
Pathak
S,
van Thourhout
D,
Bogaerts
W.
Design trade-offs for silicon-on-insulator-based AWGs for (de)multiplexer applications.
Opt Lett,
2013, 38: 2961-2964
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Design trade-offs for silicon-on-insulator-based AWGs for (de)multiplexer applications&author=Pathak S&author=van Thourhout D&author=Bogaerts W&publication_year=2013&journal=Opt Lett&volume=38&pages=2961-2964
[26]
Pathak
S,
Vanslembrouck
M,
Dumon
P.
Effect of mask discretization on performance of silicon arrayed waveguide gratings.
IEEE Photonic Technol Lett,
2014, 26: 718-721
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Effect of mask discretization on performance of silicon arrayed waveguide gratings&author=Pathak S&author=Vanslembrouck M&author=Dumon P&publication_year=2014&journal=IEEE Photonic Technol Lett&volume=26&pages=718-721
[27]
Pathak
S,
Dumon
P,
van Thourhout
D.
Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator.
IEEE Photonic J,
2014, 6: 1-9
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator&author=Pathak S&author=Dumon P&author=van Thourhout D&publication_year=2014&journal=IEEE Photonic J&volume=6&pages=1-9
[28]
Wang
J,
Chen
S,
Dai
D.
Silicon hybrid demultiplexer with 64 channels for wavelength/mode-division multiplexed on-chip optical interconnects.
Opt Lett,
2014, 39: 6993-6996
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon hybrid demultiplexer with 64 channels for wavelength/mode-division multiplexed on-chip optical interconnects&author=Wang J&author=Chen S&author=Dai D&publication_year=2014&journal=Opt Lett&volume=39&pages=6993-6996
[29]
Bogaerts
W,
de Heyn
P,
van Vaerenbergh
T.
Silicon microring resonators.
Laser Photonic Rev,
2012, 6: 47-73
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon microring resonators&author=Bogaerts W&author=de Heyn P&author=van Vaerenbergh T&publication_year=2012&journal=Laser Photonic Rev&volume=6&pages=47-73
[30]
Dong
P,
Qian
W,
Liang
H.
Low power and compact reconfigurable multiplexing devices based on silicon microring resonators.
Opt Express,
2010, 18: 9852-9858
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Low power and compact reconfigurable multiplexing devices based on silicon microring resonators&author=Dong P&author=Qian W&author=Liang H&publication_year=2010&journal=Opt Express&volume=18&pages=9852-9858
[31]
Dong
P,
Feng
N N,
Feng
D Z.
GHz-bandwidth optical filters based on high-order silicon ring resonators.
Opt Express,
2010, 18: 23784-23789
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=GHz-bandwidth optical filters based on high-order silicon ring resonators&author=Dong P&author=Feng N N&author=Feng D Z&publication_year=2010&journal=Opt Express&volume=18&pages=23784-23789
[32]
Little
B E,
Chu
S T,
Hryniewicz
J V.
F ilter synthesis for periodically coupled microring resonators.
Opt Lett,
2000, 25: 344-346
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=F ilter synthesis for periodically coupled microring resonators&author=Little B E&author=Chu S T&author=Hryniewicz J V&publication_year=2000&journal=Opt Lett&volume=25&pages=344-346
[33]
Grover
R,
Van
V,
Ibrahim
T A.
Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters.
J Lightwave Technol,
2002, 20: 900-905
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters&author=Grover R&author=Van V&author=Ibrahim T A&publication_year=2002&journal=J Lightwave Technol&volume=20&pages=900-905
[34]
Tobing
L Y M,
Dumon
P,
Baets
R.
Boxlike filter response based on complementary photonic bandgaps in two-dimensional microresonator arrays.
Opt Lett,
2008, 33: 2512-2514
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Boxlike filter response based on complementary photonic bandgaps in two-dimensional microresonator arrays&author=Tobing L Y M&author=Dumon P&author=Baets R&publication_year=2008&journal=Opt Lett&volume=33&pages=2512-2514
[35]
Dahlem
M S,
Holzwarth
C W,
Khilo
A.
Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems.
Opt Express,
2011, 19: 306-316
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems&author=Dahlem M S&author=Holzwarth C W&author=Khilo A&publication_year=2011&journal=Opt Express&volume=19&pages=306-316
[36]
Luo
X S,
Song
J F,
Feng
S Q.
Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects.
IEEE Photonic Technol Lett,
2012, 24: 821-823
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects&author=Luo X S&author=Song J F&author=Feng S Q&publication_year=2012&journal=IEEE Photonic Technol Lett&volume=24&pages=821-823
[37]
Tan
Y,
Chen
S T,
Dai
D X.
Polarization-selective microring resonators.
Opt Express,
2017, 25: 4106-4119
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Polarization-selective microring resonators&author=Tan Y&author=Chen S T&author=Dai D X&publication_year=2017&journal=Opt Express&volume=25&pages=4106-4119
[38]
Xia
F,
Rooks
M,
Sekaric
L.
Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects.
Opt Express,
2007, 15: 11934-11941
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects&author=Xia F&author=Rooks M&author=Sekaric L&publication_year=2007&journal=Opt Express&volume=15&pages=11934-11941
[39]
Chen
P X,
Chen
S T,
Guan
X W.
High-order microring resonators with bent couplers for a box-like filter response.
Opt Lett,
2014, 39: 6304-6307
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-order microring resonators with bent couplers for a box-like filter response&author=Chen P X&author=Chen S T&author=Guan X W&publication_year=2014&journal=Opt Lett&volume=39&pages=6304-6307
[40]
Dong
P.
Silicon photonic integrated circuits for wavelength-division multiplexing applications.
IEEE J Sel Top Quant Electron,
2016, 22: 370-378
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon photonic integrated circuits for wavelength-division multiplexing applications&author=Dong P&publication_year=2016&journal=IEEE J Sel Top Quant Electron&volume=22&pages=370-378
[41]
Liang
T K,
Tsang
H K.
Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides.
IEEE Photonic Technol Lett,
2005, 17: 393-395
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides&author=Liang T K&author=Tsang H K&publication_year=2005&journal=IEEE Photonic Technol Lett&volume=17&pages=393-395
[42]
Pfau
T,
Peveling
R,
Hauden
J.
Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s.
IEEE Photonic Technol Lett,
2007, 19: 1988-1990
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s&author=Pfau T&author=Peveling R&author=Hauden J&publication_year=2007&journal=IEEE Photonic Technol Lett&volume=19&pages=1988-1990
[43]
Wang
Z C,
Dai
D X.
Ultrasmall Si-nanowire-based polarization rotator.
J Opt Soc Am B,
2008, 25: 747-753
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ultrasmall Si-nanowire-based polarization rotator&author=Wang Z C&author=Dai D X&publication_year=2008&journal=J Opt Soc Am B&volume=25&pages=747-753
[44]
Aamer
M,
Gutierrez
A M,
Brimont
A.
CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section.
IEEE Photonic Technol Lett,
2012, 24: 2031-2034
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section&author=Aamer M&author=Gutierrez A M&author=Brimont A&publication_year=2012&journal=IEEE Photonic Technol Lett&volume=24&pages=2031-2034
[45]
Fukuda
H,
Yamada
K,
Tsuchizawa
T.
Silicon photonic circuit with polarization diversity.
Opt Express,
2008, 16: 4872-4880
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon photonic circuit with polarization diversity&author=Fukuda H&author=Yamada K&author=Tsuchizawa T&publication_year=2008&journal=Opt Express&volume=16&pages=4872-4880
[46]
Dai
D X,
Bowers
J E.
Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler.
Opt Express,
2011, 19: 18614-18620
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler&author=Dai D X&author=Bowers J E&publication_year=2011&journal=Opt Express&volume=19&pages=18614-18620
[47]
Wang
J,
Liang
D,
Tang
Y B.
Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler.
Opt Lett,
2013, 38: 4-6
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler&author=Wang J&author=Liang D&author=Tang Y B&publication_year=2013&journal=Opt Lett&volume=38&pages=4-6
[48]
Dai
D X.
Silicon polarization beam splitter based on an asymmetrical evanescent coupling system with three optical waveguides.
J Lightwave Technol,
2012, 30: 3281-3287
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon polarization beam splitter based on an asymmetrical evanescent coupling system with three optical waveguides&author=Dai D X&publication_year=2012&journal=J Lightwave Technol&volume=30&pages=3281-3287
[49]
Lu
Z Q,
Wang
Y,
Zhang
F.
Wideband silicon photonic polarization beamsplitter based on point-symmetric cascaded broadband couplers.
Opt Express,
2015, 23: 29413-29422
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wideband silicon photonic polarization beamsplitter based on point-symmetric cascaded broadband couplers&author=Lu Z Q&author=Wang Y&author=Zhang F&publication_year=2015&journal=Opt Express&volume=23&pages=29413-29422
[50]
Dai
D X,
Wu
H.
Realization of a compact polarization splitter-rotator on silicon.
Opt Lett,
2016, 41: 2346-2349
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Realization of a compact polarization splitter-rotator on silicon&author=Dai D X&author=Wu H&publication_year=2016&journal=Opt Lett&volume=41&pages=2346-2349
[51]
Xu
Y,
Xiao
J B.
Compact and high extinction ratio polarization beam splitter using subwavelength grating couplers.
Opt Lett,
2016, 41: 773-776
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Compact and high extinction ratio polarization beam splitter using subwavelength grating couplers&author=Xu Y&author=Xiao J B&publication_year=2016&journal=Opt Lett&volume=41&pages=773-776
[52]
Hsu
C W,
Chang
T K,
Chen
J Y.
813 $\mu$m in length and CMOS compatible polarization beam splitter based on an asymmetrical directional coupler.
Appl Opt,
2016, 55: 3313-3318
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=813 $\mu$m in length and CMOS compatible polarization beam splitter based on an asymmetrical directional coupler&author=Hsu C W&author=Chang T K&author=Chen J Y&publication_year=2016&journal=Appl Opt&volume=55&pages=3313-3318
[53]
Wu
H,
Tan
Y,
Dai
D X.
Ultra-broadband high-performance polarizing beam splitter on silicon.
Opt Express,
2017, 25: 6069-6075
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ultra-broadband high-performance polarizing beam splitter on silicon&author=Wu H&author=Tan Y&author=Dai D X&publication_year=2017&journal=Opt Express&volume=25&pages=6069-6075
[54]
Uematsu
T,
Ishizaka
Y,
Kawaguchi
Y.
Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission.
J Lightwave Technol,
2012, 30: 2421-2426
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission&author=Uematsu T&author=Ishizaka Y&author=Kawaguchi Y&publication_year=2012&journal=J Lightwave Technol&volume=30&pages=2421-2426
[55]
Driscoll
J B,
Grote
R R,
Souhan
B.
Asymmetric Y-junctions in silicon waveguides for on-chip mode-division multiplexing.
Opt Lett,
2013, 38: 1854-1856
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Asymmetric Y-junctions in silicon waveguides for on-chip mode-division multiplexing&author=Driscoll J B&author=Grote R R&author=Souhan B&publication_year=2013&journal=Opt Lett&volume=38&pages=1854-1856
[56]
Riesen
N,
Love
J D.
Design of mode-sorting asymmetric Y-junctions.
Appl Opt,
2012, 51: 2778-2783
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Design of mode-sorting asymmetric Y-junctions&author=Riesen N&author=Love J D&publication_year=2012&journal=Appl Opt&volume=51&pages=2778-2783
[57]
Chen
W W,
Wang
P J,
Yang
J Y.
Mode multi/demultiplexer based on cascaded asymmetric Y-junctions.
Opt Express,
2013, 21: 25113-25119
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mode multi/demultiplexer based on cascaded asymmetric Y-junctions&author=Chen W W&author=Wang P J&author=Yang J Y&publication_year=2013&journal=Opt Express&volume=21&pages=25113-25119
[58]
Frellsen
L F,
Ding
Y,
Sigmund
O.
Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides.
Opt Express,
2016, 24: 16866-16873
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides&author=Frellsen L F&author=Ding Y&author=Sigmund O&publication_year=2016&journal=Opt Express&volume=24&pages=16866-16873
[59]
Xing
J,
Li
Z,
Xiao
X.
Two-mode multiplexer and demultiplexer based on adiabatic couplers.
Opt Lett,
2013, 38: 3468-3470
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Two-mode multiplexer and demultiplexer based on adiabatic couplers&author=Xing J&author=Li Z&author=Xiao X&publication_year=2013&journal=Opt Lett&volume=38&pages=3468-3470
[60]
Sun
C L,
Yu
Y,
Chen
G Y.
Silicon mode multiplexer processing dual-path mode-division multiplexing signals.
Opt Lett,
2016, 41: 5511-5514
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon mode multiplexer processing dual-path mode-division multiplexing signals&author=Sun C L&author=Yu Y&author=Chen G Y&publication_year=2016&journal=Opt Lett&volume=41&pages=5511-5514
[61]
Love
J D,
Vance
R W C,
Joblin
A.
Asymmetric, adiabatic multipronged planar splitters.
Opt Quant Electron,
1996, 28: 353-369
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Asymmetric, adiabatic multipronged planar splitters&author=Love J D&author=Vance R W C&author=Joblin A&publication_year=1996&journal=Opt Quant Electron&volume=28&pages=353-369
[62]
Dai
D X,
Wang
S P.
Asymmetric directional couplers based on silicon nanophotonic waveguides and applications.
Front Optoelectron,
2016, 9: 450-465
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Asymmetric directional couplers based on silicon nanophotonic waveguides and applications&author=Dai D X&author=Wang S P&publication_year=2016&journal=Front Optoelectron&volume=9&pages=450-465
[63]
Dai D X, Wang J. Multi-channel silicon mode (de)multiplexer based on asymmetrical directional couplers for on-chip optical interconnects. IEEE Photonic Soc News, 2014, 28: 8--14.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dai D X, Wang J. Multi-channel silicon mode (de)multiplexer based on asymmetrical directional couplers for on-chip optical interconnects. IEEE Photonic Soc News, 2014, 28: 8--14&
[64]
Guo
D F,
Chu
T.
Silicon mode (de)multiplexers with parameters optimized using shortcuts to adiabaticity.
Opt Express,
2017, 25: 9160-9170
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon mode (de)multiplexers with parameters optimized using shortcuts to adiabaticity&author=Guo D F&author=Chu T&publication_year=2017&journal=Opt Express&volume=25&pages=9160-9170
[65]
Pan
T H,
Tseng
S Y.
Short and robust silicon mode (de)multiplexers using shortcuts to adiabaticity.
Opt Express,
2015, 23: 10405-10412
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Short and robust silicon mode (de)multiplexers using shortcuts to adiabaticity&author=Pan T H&author=Tseng S Y&publication_year=2015&journal=Opt Express&volume=23&pages=10405-10412
[66]
Greenberg
M,
Orenstein
M.
Multimode add-drop multiplexing by adiabatic linearly tapered coupling.
Opt Express,
2005, 13: 9381-9387
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multimode add-drop multiplexing by adiabatic linearly tapered coupling&author=Greenberg M&author=Orenstein M&publication_year=2005&journal=Opt Express&volume=13&pages=9381-9387
[67]
Ding
Y H,
Xu
J,
Da
R F.
On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer.
Opt Express,
2013, 21: 10376-10382
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer&author=Ding Y H&author=Xu J&author=Da R F&publication_year=2013&journal=Opt Express&volume=21&pages=10376-10382
[68]
Qiu
H Y,
Yu
H,
Hu
T.
Silicon mode multi/demultiplexer based on multimode grating-assisted couplers.
Opt Express,
2013, 21: 17904-17911
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon mode multi/demultiplexer based on multimode grating-assisted couplers&author=Qiu H Y&author=Yu H&author=Hu T&publication_year=2013&journal=Opt Express&volume=21&pages=17904-17911
[69]
Chen
S T,
Shi
Y C,
He
S L.
Compact monolithically-integrated hybrid (de)multiplexer based on silicon-on-insulator nanowires for PDM-WDM systems.
Opt Express,
2015, 23: 12840-12849
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Compact monolithically-integrated hybrid (de)multiplexer based on silicon-on-insulator nanowires for PDM-WDM systems&author=Chen S T&author=Shi Y C&author=He S L&publication_year=2015&journal=Opt Express&volume=23&pages=12840-12849
[70]
Tan
Y,
Wu
H,
Dai
D X.
Silicon-based hybrid (de)multiplexer for wavelength-/polarization-division-multiplexing.
J Lightwave Technol,
2018, 36: 2051-2058
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon-based hybrid (de)multiplexer for wavelength-/polarization-division-multiplexing&author=Tan Y&author=Wu H&author=Dai D X&publication_year=2018&journal=J Lightwave Technol&volume=36&pages=2051-2058
[71]
Guo
T,
Zhang
M,
Yin
Y L.
A laser-trimming-assist wavelength-alignment technique for silicon microdonut resonators.
IEEE Photonic Technol Lett,
2017, 29: 419-422
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A laser-trimming-assist wavelength-alignment technique for silicon microdonut resonators&author=Guo T&author=Zhang M&author=Yin Y L&publication_year=2017&journal=IEEE Photonic Technol Lett&volume=29&pages=419-422
[72]
Lee
H S,
Kiravittaya
S,
Kumar
S.
Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation.
Appl Phys Lett,
2009, 95: 191109
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation&author=Lee H S&author=Kiravittaya S&author=Kumar S&publication_year=2009&journal=Appl Phys Lett&volume=95&pages=191109
[73]
Schrauwen
J,
van Thourhout
D,
Baets
R.
Trimming of silicon ring resonator by electron beam induced compaction and strain.
Opt Express,
2008, 16: 3738-3743
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Trimming of silicon ring resonator by electron beam induced compaction and strain&author=Schrauwen J&author=van Thourhout D&author=Baets R&publication_year=2008&journal=Opt Express&volume=16&pages=3738-3743
[74]
Richardson
D J,
Fini
J M,
Nelson
L E.
Space-division multiplexing in optical fibres.
Nat Photonic,
2013, 7: 354-362
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Space-division multiplexing in optical fibres&author=Richardson D J&author=Fini J M&author=Nelson L E&publication_year=2013&journal=Nat Photonic&volume=7&pages=354-362
[75]
van Uden
R G H,
Correa
R A,
Lopez
E A.
Ultra-high-density spatial division multiplexing with a few-mode multicore fibre.
Nat Photonic,
2014, 8: 865-870
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ultra-high-density spatial division multiplexing with a few-mode multicore fibre&author=van Uden R G H&author=Correa R A&author=Lopez E A&publication_year=2014&journal=Nat Photonic&volume=8&pages=865-870
[76]
Zhao
N B,
Li
X Y,
Li
G F.
Capacity limits of spatially multiplexed free-space communication.
Nat Photonic,
2015, 9: 822-826
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Capacity limits of spatially multiplexed free-space communication&author=Zhao N B&author=Li X Y&author=Li G F&publication_year=2015&journal=Nat Photonic&volume=9&pages=822-826
[77]
Gabrielli
L H,
Liu
D,
Johnson
S G.
On-chip transformation optics for multimode waveguide bends.
Nat Commun,
2012, 3: 1217
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=On-chip transformation optics for multimode waveguide bends&author=Gabrielli L H&author=Liu D&author=Johnson S G&publication_year=2012&journal=Nat Commun&volume=3&pages=1217
[78]
Dai
D X,
Mao
M.
Mode converter based on an inverse taper for multimode silicon nanophotonic integrated circuits.
Opt Express,
2015, 23: 28376-28388
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mode converter based on an inverse taper for multimode silicon nanophotonic integrated circuits&author=Dai D X&author=Mao M&publication_year=2015&journal=Opt Express&volume=23&pages=28376-28388
[79]
Driscoll
J B,
Chen
C P,
Grote
R R.
A 60 Gb/s MDM-WDM Si photonic link with $<$ 0.7 dB power penalty per channel.
Opt Express,
2014, 22: 18543
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A 60 Gb/s MDM-WDM Si photonic link with $<$ 0.7 dB power penalty per channel&author=Driscoll J B&author=Chen C P&author=Grote R R&publication_year=2014&journal=Opt Express&volume=22&pages=18543
[80]
Han
L S,
Liang
S,
Xu
J J.
Simultaneous wavelength- and mode-division (de)multiplexing for high-capacity on-chip data transmission link.
IEEE Photonic J,
2016, 8: 1-10
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Simultaneous wavelength- and mode-division (de)multiplexing for high-capacity on-chip data transmission link&author=Han L S&author=Liang S&author=Xu J J&publication_year=2016&journal=IEEE Photonic J&volume=8&pages=1-10
[81]
Ji K, Chen H M. A hybrid multiplexer for wavelength/mode-division based on photonic crystals. Proc SPIE, 2017, 244: 102440.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ji K, Chen H M. A hybrid multiplexer for wavelength/mode-division based on photonic crystals. Proc SPIE, 2017, 244: 102440&
[82]
Tan
Y,
Wu
H,
Wang
S P.
Silicon-based hybrid demultiplexer for wavelength- and mode-division multiplexing.
Opt Lett,
2018, 43: 1962-1965
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon-based hybrid demultiplexer for wavelength- and mode-division multiplexing&author=Tan Y&author=Wu H&author=Wang S P&publication_year=2018&journal=Opt Lett&volume=43&pages=1962-1965
[83]
Wang
J,
Chen
S,
Dai
D.
Silicon hybrid demultiplexer with 64 channels for wavelength/mode-division multiplexed on-chip optical interconnects.
Opt Lett,
2014, 39: 6993-6996
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon hybrid demultiplexer with 64 channels for wavelength/mode-division multiplexed on-chip optical interconnects&author=Wang J&author=Chen S&author=Dai D&publication_year=2014&journal=Opt Lett&volume=39&pages=6993-6996
[84]
Dai
D X,
Wang
J,
Chen
S T.
Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength- and mode-division-multiplexing.
Laser Photonic Rev,
2015, 9: 339-344
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength- and mode-division-multiplexing&author=Dai D X&author=Wang J&author=Chen S T&publication_year=2015&journal=Laser Photonic Rev&volume=9&pages=339-344
[85]
Luo
L W,
Ophir
N,
Chen
C P.
WDM-compatible mode-division multiplexing on a silicon chip.
Nat Commun,
2014, 5: 3069
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=WDM-compatible mode-division multiplexing on a silicon chip&author=Luo L W&author=Ophir N&author=Chen C P&publication_year=2014&journal=Nat Commun&volume=5&pages=3069
[86]
Yang
Y D,
Li
Y,
Huang
Y Z.
Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators.
Opt Express,
2014, 22: 22172-22183
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators&author=Yang Y D&author=Li Y&author=Huang Y Z&publication_year=2014&journal=Opt Express&volume=22&pages=22172-22183
[87]
Wang
S P,
Wu
H,
Tsang
H K.
Monolithically integrated reconfigurable add-drop multiplexer for mode-division-multiplexing systems.
Opt Lett,
2016, 41: 5298-5301
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Monolithically integrated reconfigurable add-drop multiplexer for mode-division-multiplexing systems&author=Wang S P&author=Wu H&author=Tsang H K&publication_year=2016&journal=Opt Lett&volume=41&pages=5298-5301
[88]
Wang
S P,
Feng
X L,
Gao
S M.
On-chip reconfigurable optical add-drop multiplexer for hybrid wavelength/mode-division-multiplexing systems.
Opt Lett,
2017, 42: 2802-2805
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=On-chip reconfigurable optical add-drop multiplexer for hybrid wavelength/mode-division-multiplexing systems&author=Wang S P&author=Feng X L&author=Gao S M&publication_year=2017&journal=Opt Lett&volume=42&pages=2802-2805
[89]
Wang
S P,
Wu
H,
Zhang
M.
A 32-channel hybrid wavelength-/mode-division (de)multiplexer on silicon.
IEEE Photonic Technol Lett,
2018, 30: 1194-1197
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A 32-channel hybrid wavelength-/mode-division (de)multiplexer on silicon&author=Wang S P&author=Wu H&author=Zhang M&publication_year=2018&journal=IEEE Photonic Technol Lett&volume=30&pages=1194-1197
[90]
Dai
D X,
Wang
J,
Shi
Y C.
Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light.
Opt Lett,
2013, 38: 1422-1424
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light&author=Dai D X&author=Wang J&author=Shi Y C&publication_year=2013&journal=Opt Lett&volume=38&pages=1422-1424
[91]
Wang
J,
He
S L,
Dai
D X.
On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing.
Laser Photonic Rev,
2014, 8: 18-22
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing&author=Wang J&author=He S L&author=Dai D X&publication_year=2014&journal=Laser Photonic Rev&volume=8&pages=18-22
[92]
Wang
J,
Chen
P X,
Chen
S T.
Improved 8-channel silicon mode demultiplexer with grating polarizers.
Opt Express,
2014, 22: 12799-12807
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Improved 8-channel silicon mode demultiplexer with grating polarizers&author=Wang J&author=Chen P X&author=Chen S T&publication_year=2014&journal=Opt Express&volume=22&pages=12799-12807
[93]
Soldano
L B,
Pennings
E C M.
Optical multi-mode interference devices based on self-imaging: principles and applications.
J Lightwave Technol,
1995, 13: 615-627
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Optical multi-mode interference devices based on self-imaging: principles and applications&author=Soldano L B&author=Pennings E C M&publication_year=1995&journal=J Lightwave Technol&volume=13&pages=615-627
[94]
Chen
S T,
Shi
Y C,
He
S L.
Compact eight-channel thermally reconfigurable optical add/drop multiplexers on silicon.
IEEE Photonic Technol Lett,
2016, 28: 1874-1877
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Compact eight-channel thermally reconfigurable optical add/drop multiplexers on silicon&author=Chen S T&author=Shi Y C&author=He S L&publication_year=2016&journal=IEEE Photonic Technol Lett&volume=28&pages=1874-1877
[95]
Dai
D X,
Li
C L,
Wang
S P.
10-channel mode (de)multiplexer with dual polarizations.
Laser Photonic Rev,
2017, 12: 1700109
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=10-channel mode (de)multiplexer with dual polarizations&author=Dai D X&author=Li C L&author=Wang S P&publication_year=2017&journal=Laser Photonic Rev&volume=12&pages=1700109