There is no abstract available for this article.
This work was supported by National Natural Science Foundation of China (Grant No. 61376032) and Tianjin Science and Technology Project of China (Grant No. 15ZCZDGX00180).
[1] Shen C X, Zhang H G, Feng D G. Survey of information security. Sci China Ser F-Inf Sci, 2007, 50: 273-298 CrossRef Google Scholar
[2] Tria A, Choukri H. Invasive attacks. In: Encyclopedia of Cryptography & Security. Boston: Springer, 2011. 623--629. Google Scholar
[3] Xuan T N, Danger J L, Guilley S, et al. Cryptographically secure shield for security IPs protection. IEEE Trans Comput, 2017, 66: 354--360. Google Scholar
[4] Briais S, Cioranesco J M, Danger J L, et al. Random active shield. In: Proceedings of Workshop on Fault Diagnosis and Tolerance in Cryptography, Piscataway, 2012. 103--113. Google Scholar
[5] Briais S, Caron S, Cioranesco J M, et al. 3D hardware canaries. In: Cryptographic Hardware and Embedded Systems. Berlin: Springer, 2012. 1--22. Google Scholar
[6] Cormen T H, Leiserson C E, Rivest R L, et al. Introduction to Algorithms. 3rd ed. Cambridge: MIT press, 2009. 65--97, 359--397. Google Scholar
Figure 1
(a) Procedure of DPOA; (b) procedure of DCDPOA; (c) simulation results; (d) ET of three algorithms.
$~S_{B}~\Leftarrow~\left\{~\left.~S(i,j)~\right|~1~\le~i~\le~8,~1~\le~j~\le~8,~~i,j~\in~2~\mathbb{N}~\right\}~$; |
$~P_{B}~\Leftarrow~{\rm~CM}(S_{B}~)~$; |
$~w~\Leftarrow~8~$, $~h~\Leftarrow~8~$; |
|
$~S_{\rm~ER}~\Leftarrow~\left\{~\left.~S(i,h+1)~\right|~1~\le~i~\le~8,~~i~\in~2\mathbb{N}+1~\right\}~$; |
$~P_{B}~\Leftarrow~{\rm~CM}(P_{B},~S_{\rm~ER}~)~$; |
$~h~\Leftarrow~h+2~$; |
|
|
$~S_{\rm~EC}~\Leftarrow~\left\{~\left.~S(w+1,j)~\right|~1~\le~j~\le~H,~~j~\in~2\mathbb{N}+1~\right\}~$; |
$~P_{B}~\Leftarrow~{\rm~CM}(P_{B},~S_{\rm~EC}~)~$; |
$~w~\Leftarrow~w+2~$; |
|
|
$~S_{\rm~EC}~\Leftarrow~\left\{~\left.~S(w+1,j)~\right|~1~\le~j~\le~8,~~j~\in~2\mathbb{N}+1~\right\}~$; |
$~P_{B}~\Leftarrow~{\rm~CM}(P_{B},~S_{\rm~EC}~)~$; |
$~w~\Leftarrow~w+2~$; |
|
|
$~S_{\rm~ER}~\Leftarrow~\left\{~\left.~S(i,h+1)~\right|~1~\le~i~\le~W,~~i~\in~2\mathbb{N}+1~\right\}~$; |
$~P_{B}~\Leftarrow~{\rm~CM}(P_{B},~S_{\rm~ER}~)~$; |
$~h~\Leftarrow~h+2~$; |
|
$~P_{F}~\Leftarrow~P_{B}~$. |
Solve $~\begin{cases} w~\times~N~+~4~\times~(N-1)~+p=W,~\\ N~\in~\mathbb{N},~~w,p~\in~2\mathbb{N}, \end{cases}~$and$~\begin{cases} h~\times~M~+~4~\times~(M-1)~+q=H,~\\ M~\in~\mathbb{N},~~h,q~\in~2\mathbb{N}, \end{cases}~$ get suitable $~N,w,p,M,h,q~$; |
|
$~P_{a}~\Leftarrow~{\rm~DP}(w,h)~$; |
|
$~P_{b}~\Leftarrow~P_{a}~$; |
|
$~S_{\rm~CH}~\Leftarrow~\left\{~\left.~S(i,j)~\right|~1~\le~i~\le~w,~h~\le~j~\le~h+4,\right.~$ $~~~~~~~~~~~\left.~i,~j~\in~2~\mathbb{N}+1~\right\}~$; |
$~P_{b}~\Leftarrow~{\rm~DP}(P_{a},~S_{\rm~CH},~P_{b})~$; |
|
|
|
$~P_{c}~\Leftarrow~P_{b}~$; |
|
$~S_{\rm~CV}~\Leftarrow~\left\{~\left.~S(i,j)~\right|~1~\le~j~\le~\left[~h~\times~M~+~4~\times~(M-1)~\right],~\right.~$$~\left.~~~~~~~~~~~~~w~\le~i~\le~w+4,~~i,~j~\in~2~\mathbb{N}+1~\right\}~$; |
$~P_{c}~\Leftarrow~{\rm~DP}(P_{b},~S_{\rm~CV},~P_{c})~$; |
|
$~S_{\rm~RV}~\Leftarrow~\left\{~\left.~S(i,j)~\right|~1~\le~i~\le~\left[~w~\times~N~+~4~\times~(N-1)~\right],~\right.~$ $~~~~~~~~~~~~\left[~h~\times~M~+~4~\times~(M-1)~\right]~\le~j~\le~H,~$ $~\left.~~~~~~~~~~~~i,j~\in~2~\mathbb{N}+1~\right\}~$; |
$~P_{c}~\Leftarrow~{\rm~DP}(P_{c},~S_{\rm~RV})~$; |
$~S_{\rm~RH}~\Leftarrow~\left\{~\left.~S(i,j)~\right|~\left[~w~\times~N~+~4~\times~(N-1)~\right]~\le~i~\le~W,~\right.~$ $~\left.~~~~~~~~~~~~~1~\le~j~\le~H,~~i,j~\in~2~\mathbb{N}+1~\right\}~$; |
$~P_{c}~\Leftarrow~{\rm~DP}(P_{c},~S_{\rm~RH})~$; |
$~P_{F}~\Leftarrow~P_{c}~$. |