There is no abstract available for this article.
This work was supported by National Natural Science Foundation of China (Grant No. 61571419).
Figures A1, B1, B2, C1, C2.
[1] Zhang B C, Hong W, Wu Y R. Sparse microwave imaging: Principles and applications. Sci China Inf Sci, 2012, 55: 1722-1754 CrossRef Google Scholar
[2] Baraniuk R, Steeghs P. Compressive radar imaging. In: Proceedings of IEEE Radar Conference, Boston, 2007. 128--133. Google Scholar
[3] Jian Fang , Zongben Xu , Bingchen Zhang . Fast Compressed Sensing SAR Imaging Based on Approximated Observation. IEEE J Sel Top Appl Earth Observations Remote Sens, 2014, 7: 352-363 CrossRef ADS arXiv Google Scholar
[4] Bi H, Zhang B, Zhu X X. Extended Chirp Scaling-Baseband Azimuth Scaling-Based Azimuth-Range Decouple $L_{1}$ Regularization for TOPS SAR Imaging via CAMP. IEEE Trans Geosci Remote Sens, 2017, 55: 3748-3763 CrossRef ADS Google Scholar
[5] Quan X, Zhang B, Wang Z. An efficient data compression technique based on BPDN for scattered fields from complex targets. Sci China Inf Sci, 2017, 60: 109302 CrossRef Google Scholar
[6] Candes E, Tao T. The Dantzig selector: Statistical estimation when p is much larger than n. Ann Statist, 2007, 35: 2313-2351 CrossRef Google Scholar
[7] Selesnick I. Sparse Regularization via Convex Analysis. IEEE Trans Signal Process, 2017, 65: 4481-4494 CrossRef ADS arXiv Google Scholar
[8] Bauschke H H, Combettes P L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces. New York: Springer, 2011. Google Scholar
[9] Naidu K. Data dome: full k-space sampling data for high-frequency radar research. Proc SPIE Int Soc Opt Eng, 2004, 5427: 200--207. Google Scholar
$\boldsymbol{w}^{i}~=~\boldsymbol{x}^{i}~-~\zeta~{\boldsymbol{\Phi}}^{\rm~H}(\boldsymbol{\Phi}(\boldsymbol{x}^{i}~+~\gamma(\boldsymbol{v}^i~-~\boldsymbol{x}^i))-\boldsymbol{y})$; |
$\boldsymbol{\mu}~^i~=~v^i~-~\zeta~\gamma~{\boldsymbol{\Phi}}^{\rm~H}(\boldsymbol{\Phi}(\boldsymbol{v}^i~-~\boldsymbol{x}^i))$; |
$\lambda~=~|\boldsymbol{w}^{i}|_{K+1}/\zeta$; |
$\boldsymbol{x}^{i}~=~f_{\lambda\zeta}(\boldsymbol{w}^i)$; |
$\boldsymbol{v}^{i}~=~f_{\lambda\zeta}(\boldsymbol{\mu}~^i)$; |