There is no abstract available for this article.
This work was partially supported by National Major Project (Grant No. 2016 ZX03001011-005), National Natural Science Foundation of China (Grant No. 61521061), 333 Program of Jiangsu (Grant No. BRA2017366) and Huawei.
Appendixes A–F.
[1] Arikan E. Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans Inf Theory, 2009, 55: 3051-3073 CrossRef Google Scholar
[2] Tal I, Vardy A. List decoding of polar codes. IEEE Trans Inf Theory, 2015, 61: 2213-2226 CrossRef Google Scholar
[3] Cao C Z, Kuang J M, Fei Z S. Low complexity list successive cancellation decoding of polar codes. IET Commun, 2014, 8: 3145-3149 CrossRef Google Scholar
[4] Xu Q Y, Pan Z W, Liu N. A complexity-reduced fast successive cancellation list decoder for polar codes. Sci China Inf Sci, 2018, 61: 022309 CrossRef Google Scholar
[5] Alamdar-Yazdi A, Kschischang F R. A simplified successive-cancellation decoder for polar codes. IEEE Commun Lett, 2011, 15: 1378-1380 CrossRef Google Scholar
[6] Hashemi S A, Condo C, Gross W J. Fast simplified successive-cancellation list decoding of polar codes. In: Proceedings of IEEE Wireless Communications and Networking Conference Workshops, San Francisco, 2017. Google Scholar
[7] Hashemi S A, Condo C, Gross W J. Fast and flexible successive-cancellation list decoders for polar codes. IEEE Trans Signal Process, 2017, 65: 5756-5769 CrossRef ADS arXiv Google Scholar
[8] Song H C, Zhang S Q, You X H, et al. Efficient metric sorting schemes for successive cancellation list decoding of polar codes. In: Proceedings of IEEE International Symposium on Circuits and Systems, Baltimore, 2017. Google Scholar
[9] Balatsoukas-Stimming A, Bastani Parizi M, Burg A. LLR-based successive cancellation list decoding of polar codes. IEEE Trans Signal Process, 2015, 63: 5165-5179 CrossRef ADS arXiv Google Scholar
Figure 1
BLER performance comparison 1. (a) List size $L~=~8$; (b) list size $L~=~16$.