logo

SCIENCE CHINA Information Sciences, Volume 62 , Issue 1 : 012206(2019) https://doi.org/10.1007/s11432-017-9389-9

Extended state observer-based third-order sliding mode finite-time attitude tracking controller for rigid spacecraft

More info
  • ReceivedNov 7, 2017
  • AcceptedMar 5, 2018
  • PublishedOct 17, 2018

Abstract


Acknowledgment

The work was supported by King $\mbox{Mongkut's}$ University of Technology North Bangkok and Thailand Research Fund (TRF) (Grant No. RSA6080043).


References

[1] Chen Z Y, Huang J. Attitude tracking and disturbance rejection of rigid spacecraft by adaptive control. IEEE Trans Autom Control, 2009, 54: 600-605 CrossRef Google Scholar

[2] Zhu Z, Xia Y Q, Fu M Y. Adaptive sliding mode control for attitude stabilization with actuator saturation. IEEE Trans Ind Electron, 2011, 58: 4898-4907 CrossRef Google Scholar

[3] Yeh F K. Sliding-mode adaptive attitude controller design for spacecrafts with thrusters. IET Control Theory Appl, 2010, 4: 1254-1264 CrossRef Google Scholar

[4] Lu K F, Xia Y Q, Zhu Z. Sliding mode attitude tracking of rigid spacecraft with disturbances. J Franklin Inst, 2012, 349: 413-440 CrossRef Google Scholar

[5] Luo W C, Chu Y C, Ling K V. Inverse optimal adaptive control for attitude tracking of spacecraft. IEEE Trans Autom Control, 2005, 50: 1639-1654 CrossRef Google Scholar

[6] Pukdeboon C, Zinober A S I. Control Lyapunov function optimal sliding mode controllers for attitude tracking of spacecraft. J Franklin Inst, 2012, 349: 456-475 CrossRef Google Scholar

[7] Zou A M. Finite-time output feedback attitude tracking control for rigid spacecraft. IEEE Trans Control Syst Technol, 2014, 22: 338-345 CrossRef Google Scholar

[8] Show L L, Juang J C, Jan Y W. An LMI-based nonlinear attitude control approach. IEEE Trans Control Syst Technol, 2003, 11: 73-83 CrossRef Google Scholar

[9] Cong B L, Liu X D, Chen Z. Backstepping based adaptive sliding mode control for spacecraft attitude maneuvers. J Aerosp Eng, 2013, 22: 1--7. Google Scholar

[10] Guo Y, Song S M. Adaptive finite-time backstepping control for attitude tracking of spacecraft based on rotation matrix. Chinese J Aeronaut, 2014, 27: 375-382 CrossRef Google Scholar

[11] Pisu P, Serrani A. Attitude tracking with adaptive rejection of rate gyro disturbances. IEEE Trans Autom Control, 2007, 52: 2374-2379 CrossRef Google Scholar

[12] Zou A M, Kumar K D. Adaptive fuzzy fault-tolerant attitude control of spacecraft. Control Eng Pract, 2011, 19: 10-21 CrossRef Google Scholar

[13] Utkin V I. Sliding Modes in Control and Optimization. Berlin: Spinger, 1992. Google Scholar

[14] Bhat S P, Bernstein D S. Finite-time stability of continuous autonomous systems. SIAM J Control Opt, 2000, 38: 751-766 CrossRef Google Scholar

[15] Bhat S P, Bernstein D S. Geometric homogeneity with applications to finite-time stability. Math Control Signal Syst, 2005, 17: 101-127 CrossRef Google Scholar

[16] Man Z H, Paplinski A P, Wu H R. A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Trans Autom Control, 1994, 39: 2464-2469 CrossRef Google Scholar

[17] Wu Y, Yu X, Man Z. Terminal sliding mode control design for uncertain dynamic systems. Syst Control Lett, 1998, 34: 281-287 CrossRef Google Scholar

[18] Lu K, Xia Y. Finite-time fault-tolerant control for rigid spacecraft with actuator saturations. IET Control Theory Appl, 2013, 7: 1529-1539 CrossRef Google Scholar

[19] Pukdeboon C, Siricharuanun P. Nonsingular terminal sliding mode based finite-time control for spacecraft attitude tracking. Int J Control Autom Syst, 2014, 12: 530-540 CrossRef Google Scholar

[20] Guo Y, Song S M, Li X H. Quaternion-based finite-time control for attitude tracking of the spacecraft without unwinding. Int J Control Autom Syst, 2015, 13: 1351-1359 CrossRef Google Scholar

[21] Zhao L, Jia Y M. Finite-time attitude tracking control for a rigid spacecraft using time-varying terminal sliding mode techniques. Int J Control, 2015, 88: 1150-1162 CrossRef Google Scholar

[22] Tiwari P M, Janardhanan S, un Nabi M. Rigid spacecraft attitude control using adaptive integral second order sliding mode. Aerosp Sci Technol, 2015, 42: 50-57 CrossRef Google Scholar

[23] Gui H, Vukovich G. Adaptive integral sliding mode control for spacecraft attitude tracking with actuator uncertainty. J Franklin Inst, 2015, 352: 5832-5852 CrossRef Google Scholar

[24] Chen M, Wu Q X, Cui R X. Terminal sliding mode tracking control for a class of SISO uncertain nonlinear systems. ISA Trans, 2013, 52: 198-206 CrossRef PubMed Google Scholar

[25] Wallsgrove R J, Akella M R. Globally stabilizing saturated attitude control in the presence of bounded unknown disturbances. J Guid Control Dyn, 2005, 28: 957-963 CrossRef ADS Google Scholar

[26] Bo?kovic J D, Li S M, Mehra R K. Robust adaptive variable structure control of spacecraft under control input saturation. J Guid Control Dyn, 2001, 24: 14-22 CrossRef ADS Google Scholar

[27] Hu Q L, Li B, Qi J T. Disturbance observer based finite-time attitude control for rigid spacecraft under input saturation. Aerosp Sci Technol, 2014, 39: 13-21 CrossRef Google Scholar

[28] Laghrouche? S, Smaoui M, Plestan F. Higher order sliding mode control based on optimal approach of an electropneumatic actuator. Int J Control, 2006, 79: 119-131 CrossRef Google Scholar

[29] Benahdouga S, Boukhetala D, Boudjema F. Decentralized high order sliding mode control of multimachine power systems. Int J Electr Power Energy Syst, 2012, 43: 1081-1086 CrossRef Google Scholar

[30] Tian B L, Zong Q, Wang J. Quasi-continuous high-order sliding mode controller design for reusable launch vehicles in reentry phase. Aerosp Sci Technol, 2013, 28: 198-207 CrossRef Google Scholar

[31] Delprat S, de Loza A F. High order sliding mode control for hybrid vehicle stability. Int J Syst Sci, 2014, 45: 1202-1212 CrossRef Google Scholar

[32] Perruquetti W, Barbot J P. Sliding Mode Control in Engineering. New York: Marcel Dekker, 2002. Google Scholar

[33] Edwards C, Colet E F, Fridman L. Advances in Variable Structure and Sliding Mode Control. Berlin: Springer, 2006. Google Scholar

[34] Levant A. Higher-order sliding modes, differentiation and output-feedback control. Int J Control, 2003, 76: 924-941 CrossRef Google Scholar

[35] Levant A, Pridor A, Gitizadeh R. Aircraft pitch control via second-order sliding technique. J Guid Control Dyn, 2000, 23: 586-594 CrossRef ADS Google Scholar

[36] Shtessel Y B, Shkolnikov I A, Levant A. Smooth second-order sliding modes: missile guidance application. Automatica, 2007, 43: 1470-1476 CrossRef Google Scholar

[37] Pukdeboon C. Output feedback second order sliding mode control for spacecraft attitude and translation motion. Int J Control Autom Syst, 2016, 14: 411-424 CrossRef Google Scholar

[38] Pukdeboon C, Zinober A S I, Thein M W L. Quasi-continuous higher order sliding-mode controllers for spacecraft-attitude-tracking maneuvers. IEEE Trans Ind Electron, 2010, 57: 1436-1444 CrossRef Google Scholar

[39] Shen Y X, Shao K Y, Ren W J. Diving control of autonomous underwater vehicle based on improved active disturbance rejection control approach. Neurocomputing, 2016, 173: 1377-1385 CrossRef Google Scholar

[40] Su Y X, Zheng C H, Duan B Y. Automatic disturbances rejection controller for precise motion control of permanent-magnet synchronous motors. IEEE Trans Ind Electron, 2005, 52: 814-823 CrossRef Google Scholar

[41] Zhu Z, Xu D, Liu J M. Missile guidance law based on extended state observer. IEEE Trans Ind Electron, 2013, 60: 5882-5891 CrossRef Google Scholar

[42] Lu K, Xia Y. Finite-time fault-tolerant control for rigid spacecraft with actuator saturations. IET Control Theory Appl, 2013, 7: 1529-1539 CrossRef Google Scholar

[43] Yang J, Li S H, Yu X H. Sliding-mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Trans Ind Electron, 2012, 60: 160--169. Google Scholar

[44] Yang J, Li S, Su J. Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances. Automatica, 2013, 49: 2287-2291 CrossRef Google Scholar

[45] Yang J, Su J Y, Li S H. High-order mismatched disturbance compensation for motion control systems via a continuous dynamic sliding-mode approach. IEEE Trans Ind Inf, 2014, 10: 604-614 CrossRef Google Scholar

[46] Yang J, Chen W H, Li S H. Disturbance/uncertainty estimation and attenuation techniques in PMSM drives ---- a survey. IEEE Trans Ind Electron, 2017, 64: 3273-3285 CrossRef Google Scholar

[47] Wertz J R. Spacecraft Attitude Determination and Control. Berlin: Kluwer Academic, 1978. Google Scholar

[48] Sidi M J. Spacecraft Dynamics and Control a Practical Engineering Approach. Cambridge: Cambridge University Press, 1997. Google Scholar

[49] Shuster M D. A survey of attitude representations. J Astronaut Sci, 1993, 41: 439--517. Google Scholar

[50] Lan Q X, Qian C J, Li S H. Finite-time disturbance observer design and attitude tracking control of a rigid spacecraft. J Dyn Sys Meas Control, 2017, 139: 061010 CrossRef Google Scholar

[51] Yan R D, Wu Z. Attitude stabilization of flexible spacecrafts via extended disturbance observer based controller. Acta Astronaut, 2017, 133: 73-80 CrossRef ADS Google Scholar

[52] Zhong C X, Chen Z Y, Guo Y. Attitude control for flexible spacecraft with disturbance rejection. IEEE Trans Aerosp Electron Syst, 2017, 53: 101-110 CrossRef ADS Google Scholar

[53] Chen M, Ren B B, Wu Q X. Anti-disturbance control of hypersonic flight vehicles with input saturation using disturbance observer. Sci China Inf Sci, 2015, 58: 070202 CrossRef Google Scholar