References
[1]
Williams
S M,
Hoft
R G.
Adaptive frequency domain control of PWM switched power line conditioner.
IEEE Trans Power Electron,
1991, 6: 665-670
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Adaptive frequency domain control of PWM switched power line conditioner&author=Williams S M&author=Hoft R G&publication_year=1991&journal=IEEE Trans Power Electron&volume=6&pages=665-670
[2]
Zhao
J,
Spong
M W.
Hybrid control for global stabilization of the cart-pendulum system.
Automatica,
2001, 37: 1941-1951
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hybrid control for global stabilization of the cart-pendulum system&author=Zhao J&author=Spong M W&publication_year=2001&journal=Automatica&volume=37&pages=1941-1951
[3]
Zhang
W,
Hu
J H.
Dynamic buffer management using optimal control of hybrid systems.
Automatica,
2008, 44: 1831-1840
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dynamic buffer management using optimal control of hybrid systems&author=Zhang W&author=Hu J H&publication_year=2008&journal=Automatica&volume=44&pages=1831-1840
[4]
Branicky
M S.
Multiple Lyapunov functions and other analysis tools for switched and hybrid systems.
IEEE Trans Autom Control,
1998, 43: 475-482
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multiple Lyapunov functions and other analysis tools for switched and hybrid systems&author=Branicky M S&publication_year=1998&journal=IEEE Trans Autom Control&volume=43&pages=475-482
[5]
Hespanha J P, Morse A S. Stability of switched systems with average dwell-time. In: Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, 2002. 2655--2660.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hespanha J P, Morse A S. Stability of switched systems with average dwell-time. In: Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, 2002. 2655--2660&
[6]
Liberzon
D,
Morse
A S.
Basic problems in stability and design of switched systems.
IEEE Control Syst Mag,
1999, 19: 59-70
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Basic problems in stability and design of switched systems&author=Liberzon D&author=Morse A S&publication_year=1999&journal=IEEE Control Syst Mag&volume=19&pages=59-70
[7]
Liberzon
D,
Hespanha
J P,
Morse
A S.
Stability of switched systems: a Lie-algebraic condition.
Syst Control Lett,
1999, 37: 117-122
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stability of switched systems: a Lie-algebraic condition&author=Liberzon D&author=Hespanha J P&author=Morse A S&publication_year=1999&journal=Syst Control Lett&volume=37&pages=117-122
[8]
Wang
Y,
Wang
W,
Liu
G P.
Stability of linear discrete switched systems with delays based on average dwell time method.
Sci China Inf Sci,
2010, 53: 1216-1223
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stability of linear discrete switched systems with delays based on average dwell time method&author=Wang Y&author=Wang W&author=Liu G P&publication_year=2010&journal=Sci China Inf Sci&volume=53&pages=1216-1223
[9]
Shorten
R,
Wirth
F,
Mason
O.
Stability criteria for switched and hybrid systems.
SIAM Rev,
2007, 49: 545-592
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stability criteria for switched and hybrid systems&author=Shorten R&author=Wirth F&author=Mason O&publication_year=2007&journal=SIAM Rev&volume=49&pages=545-592
[10]
Lin
H,
Antsaklis
P J.
Stability and stabilizability of switched linear systems: a survey of recent results.
IEEE Trans Autom Control,
2009, 54: 308-322
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stability and stabilizability of switched linear systems: a survey of recent results&author=Lin H&author=Antsaklis P J&publication_year=2009&journal=IEEE Trans Autom Control&volume=54&pages=308-322
[11]
Sun Z D, Ge S S. Stability Theory of Switched Dynamical Systems. Berlin: Springer, 2011.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sun Z D, Ge S S. Stability Theory of Switched Dynamical Systems. Berlin: Springer, 2011&
[12]
Zhu
Y Z,
Zhang
L X,
Lin
W Y.
Benefits of redundant channels in observer-based $H_{\infty}$ control for discrete-time switched linear systems.
Sci China Tech Sci,
2016, 59: 55-62
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Benefits of redundant channels in observer-based $H_{\infty}$ control for discrete-time switched linear systems&author=Zhu Y Z&author=Zhang L X&author=Lin W Y&publication_year=2016&journal=Sci China Tech Sci&volume=59&pages=55-62
[13]
Blanchini
F.
Nonquadratic Lyapunov functions for robust control.
Automatica,
1995, 31: 451-461
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nonquadratic Lyapunov functions for robust control&author=Blanchini F&publication_year=1995&journal=Automatica&volume=31&pages=451-461
[14]
Blanchini F, Miani S. A new class of universal Lyapunov functions for the control of uncertain linear systems. IEEE Trans Autom Control, 1996, 44: 641--647.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Blanchini F, Miani S. A new class of universal Lyapunov functions for the control of uncertain linear systems. IEEE Trans Autom Control, 1996, 44: 641--647&
[15]
Sun
Z D.
Recent advances on analysis and design of switched linear systems.
Control Theory Technol,
2017, 15: 242-244
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Recent advances on analysis and design of switched linear systems&author=Sun Z D&publication_year=2017&journal=Control Theory Technol&volume=15&pages=242-244
[16]
Boscain
U.
Stability of planar switched systems: the linear single input case.
SIAM J Control Optim,
2002, 41: 89-112
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stability of planar switched systems: the linear single input case&author=Boscain U&publication_year=2002&journal=SIAM J Control Optim&volume=41&pages=89-112
[17]
Mason
P,
Boscain
U,
Chitour
Y.
Common polynomial Lyapunov functions for linear switched systems.
SIAM J Control Optim,
2006, 45: 226-245
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Common polynomial Lyapunov functions for linear switched systems&author=Mason P&author=Boscain U&author=Chitour Y&publication_year=2006&journal=SIAM J Control Optim&volume=45&pages=226-245
[18]
Boscain
U,
Balde
M.
Stability of planar switched systems: the nondiagonalizable case.
Commun Pure Appl Anal,
2008, 7: 1-21
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stability of planar switched systems: the nondiagonalizable case&author=Boscain U&author=Balde M&publication_year=2008&journal=Commun Pure Appl Anal&volume=7&pages=1-21
[19]
Molchanov
A P,
Pyatnitskiy
Y S.
Criteria of asymptotic stability of differential and difference inclusions encountered in control theory.
Syst Control Lett,
1989, 13: 59-64
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Criteria of asymptotic stability of differential and difference inclusions encountered in control theory&author=Molchanov A P&author=Pyatnitskiy Y S&publication_year=1989&journal=Syst Control Lett&volume=13&pages=59-64
[20]
Mancilla-Aguilar
J L,
Garc$\acute{\i}$a
R A.
A converse Lyapunov theorem for nonlinear switched systems.
Syst Control Lett,
2000, 41: 67-71
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A converse Lyapunov theorem for nonlinear switched systems&author=Mancilla-Aguilar J L&author=Garc$\acute{\i}$a R A&publication_year=2000&journal=Syst Control Lett&volume=41&pages=67-71
[21]
Peleties P, Decarlo R. Asymptotic stability of m-switched systems using Lyapunov-like functions. In: Proceedings of the American Control Conference, Boston, 1991. 1679--1684.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Peleties P, Decarlo R. Asymptotic stability of m-switched systems using Lyapunov-like functions. In: Proceedings of the American Control Conference, Boston, 1991. 1679--1684&
[22]
Pettersson S, Lennartson B. Stability and robustness for hybrid systems. In: Proceedings of the 35th IEEE Conference on Decision and Control, Kobe, 1996. 1202--1207.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Pettersson S, Lennartson B. Stability and robustness for hybrid systems. In: Proceedings of the 35th IEEE Conference on Decision and Control, Kobe, 1996. 1202--1207&
[23]
Elsner
L.
The generalized spectral-radius theorem: an analytic-geometric proof.
Linear Algebra Appl,
1995, 220: 151-159
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The generalized spectral-radius theorem: an analytic-geometric proof&author=Elsner L&publication_year=1995&journal=Linear Algebra Appl&volume=220&pages=151-159
[24]
Blondel
V D,
Nesterov
Y.
Computationally efficient approximations of the joint spectral radius.
SIAM J Matrix Anal Appl,
2005, 27: 256-272
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Computationally efficient approximations of the joint spectral radius&author=Blondel V D&author=Nesterov Y&publication_year=2005&journal=SIAM J Matrix Anal Appl&volume=27&pages=256-272
[25]
Sun
Z.
A note on marginal stability of switched systems.
IEEE Trans Autom Control,
2008, 53: 625-631
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A note on marginal stability of switched systems&author=Sun Z&publication_year=2008&journal=IEEE Trans Autom Control&volume=53&pages=625-631
[26]
Chitour Y, Mason P, Sigalotti M. On the marginal instability of linear switched systems. Syst Control Lett, 2011, 61: 7322--7327.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chitour Y, Mason P, Sigalotti M. On the marginal instability of linear switched systems. Syst Control Lett, 2011, 61: 7322--7327&
[27]
Barabanov N E. Ways to compute the Lyapunov index for differential nesting. Avtomatika I Telemekhanika, 1989, 50: 475--479.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Barabanov N E. Ways to compute the Lyapunov index for differential nesting. Avtomatika I Telemekhanika, 1989, 50: 475--479&
[28]
Sun Z D. Matrix measure approach for stability of switched linear systems. In: Proceedings of the 7th IFAC Symposium Nonlinear Control System, Pretoria, 2007. 557--560.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sun Z D. Matrix measure approach for stability of switched linear systems. In: Proceedings of the 7th IFAC Symposium Nonlinear Control System, Pretoria, 2007. 557--560&
[29]
Xiong J D, Sun Z D. Approximation of extreme measure for switched linear systems. In: Proceedings of the 9th IEEE International Conference on Control and Automation, Santiago, 2011. 722--725.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Xiong J D, Sun Z D. Approximation of extreme measure for switched linear systems. In: Proceedings of the 9th IEEE International Conference on Control and Automation, Santiago, 2011. 722--725&
[30]
Lin
M L,
Sun
Z D.
Approximating the spectral abscissa for switched linear systems via coordinate transformations.
J Syst Sci Complex,
2016, 29: 350-366
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Approximating the spectral abscissa for switched linear systems via coordinate transformations&author=Lin M L&author=Sun Z D&publication_year=2016&journal=J Syst Sci Complex&volume=29&pages=350-366
[31]
Lin M L, Sun Z D. Approximation of the spectral abscissa for switched linear systems via generalized coordinate transformations. In: Proceedings of the 11th World Congress on Intelligent Control and Automation, Shenyang, 2014. 2208--2212.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lin M L, Sun Z D. Approximation of the spectral abscissa for switched linear systems via generalized coordinate transformations. In: Proceedings of the 11th World Congress on Intelligent Control and Automation, Shenyang, 2014. 2208--2212&
[32]
Protasov
V Y,
Jungers
R M.
Analysing the stability of linear systems via exponential Chebyshev polynomials.
IEEE Trans Autom Control,
2016, 61: 795-798
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Analysing the stability of linear systems via exponential Chebyshev polynomials&author=Protasov V Y&author=Jungers R M&publication_year=2016&journal=IEEE Trans Autom Control&volume=61&pages=795-798
[33]
Gurvits
L.
Stability of discrete linear inclusion.
Linear Algebra Appl,
1995, 231: 47-85
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stability of discrete linear inclusion&author=Gurvits L&publication_year=1995&journal=Linear Algebra Appl&volume=231&pages=47-85
[34]
Shih
M H,
Wu
J W,
Pang
C T.
Asymptotic stability and generalized Gelfand spectral radius formula.
Linear Algebra Appl,
1997, 252: 61-70
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Asymptotic stability and generalized Gelfand spectral radius formula&author=Shih M H&author=Wu J W&author=Pang C T&publication_year=1997&journal=Linear Algebra Appl&volume=252&pages=61-70
[35]
Parrilo
P A,
Jadbabaie
A.
Approximation of the joint spectral radius using sum of squares.
Linear Algebra Appl,
2008, 428: 2385-2402
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Approximation of the joint spectral radius using sum of squares&author=Parrilo P A&author=Jadbabaie A&publication_year=2008&journal=Linear Algebra Appl&volume=428&pages=2385-2402
[36]
Sun
Z D,
Shorten
R N.
On convergence rates of simultaneously triangularizable switched linear systems.
IEEE Trans Autom Control,
2005, 50: 1224-1228
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=On convergence rates of simultaneously triangularizable switched linear systems&author=Sun Z D&author=Shorten R N&publication_year=2005&journal=IEEE Trans Autom Control&volume=50&pages=1224-1228
[37]
Vidyasagar M. Nonlinear Systems Analysis. Englewood Cliffs: Prentice-Hall, 1993.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Vidyasagar M. Nonlinear Systems Analysis. Englewood Cliffs: Prentice-Hall, 1993&
[38]
Blanchini
F.
The gain scheduling and the robust state feedback stabilization problems.
IEEE Trans Autom Control,
2000, 45: 2061-2070
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The gain scheduling and the robust state feedback stabilization problems&author=Blanchini F&publication_year=2000&journal=IEEE Trans Autom Control&volume=45&pages=2061-2070
[39]
Macduffee C. The Theory of Matrices. New York: Chelsea, 1946.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Macduffee C. The Theory of Matrices. New York: Chelsea, 1946&
[40]
Hartwig
R E.
The resultant and the matrix equation $AX~=~XB$.
SIAM J Appl Math,
1972, 22: 538-544
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The resultant and the matrix equation $AX~=~XB$&author=Hartwig R E&publication_year=1972&journal=SIAM J Appl Math&volume=22&pages=538-544
[41]
Zahreddine
Z.
Matrix measure and application to stability of matrices and interval dynamical systems.
Int J Math Math Sci,
2003, 2003: 75-85
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Matrix measure and application to stability of matrices and interval dynamical systems&author=Zahreddine Z&publication_year=2003&journal=Int J Math Math Sci&volume=2003&pages=75-85